Butzmann / Beattie | Convergence Structures and Applications to Functional Analysis | Buch | 978-1-4020-0566-4 | sack.de

Buch, Englisch, 264 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1270 g

Butzmann / Beattie

Convergence Structures and Applications to Functional Analysis


2002
ISBN: 978-1-4020-0566-4
Verlag: Springer Netherlands

Buch, Englisch, 264 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1270 g

ISBN: 978-1-4020-0566-4
Verlag: Springer Netherlands


For many, modern functional analysis dates back to Banach's book [Ba32]. Here, such powerful results as the Hahn-Banach theorem, the open-mapping theorem and the uniform boundedness principle were developed in the setting of complete normed and complete metrizable spaces. When analysts realized the power and applicability of these methods, they sought to generalize the concept of a metric space and to broaden the scope of these theorems. Topological methods had been generally available since the appearance of Hausdorff's book in 1914. So it is surprising that it took so long to recognize that they could provide the means for this generalization. Indeed, the theory of topo logical vector spaces was developed systematically only after 1950 by a great many different people, induding Bourbaki, Dieudonne, Grothendieck, Köthe, Mackey, Schwartz and Treves. The resulting body of work produced a whole new area of mathematics and generalized Banach's results. One of the great successes here was the development of the theory of distributions. While the not ion of a convergent sequence is very old, that of a convergent fil ter dates back only to Cartan [Ca]. And while sequential convergence structures date back to Frechet [Fr], filter convergence structures are much more recent: [Ch], [Ko] and [Fi]. Initially, convergence spaces and convergence vector spaces were used by [Ko], [Wl], [Ba], [Ke64], [Ke65], [Ke74], [FB] and in particular [Bz] for topology and analysis.

Butzmann / Beattie Convergence Structures and Applications to Functional Analysis jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Convergence spaces.- 2 Uniform convergence spaces.- 3 Convergence vector spaces.- 4 Duality.- 5 Hahn-Banach extension theorems.- 6 The closed graph theorem.- 7 The Banach-Steinhaus theorem.- 8 Duality theory for convergence groups.- List of Notations.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.