E-Book, Englisch, Band 2, 416 Seiten
Byrd / Chernin / Teerikorpi Paths to Dark Energy
1. Auflage 2012
ISBN: 978-3-11-025878-3
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Theory and Observation
E-Book, Englisch, Band 2, 416 Seiten
Reihe: De Gruyter Studies in Mathematical PhysicsISSN
ISBN: 978-3-11-025878-3
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Theoretical Physicists, Cosmologists, Lecturers and Graduate Students
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;5
2;1 The start of the paths;13
2.1;1.1 Newton’s absolute space and time;13
2.2;1.2 Light versus absolute space and time;14
2.3;1.3 Space-time events and intervals;16
2.4;1.4 Space-time measurements and Lorentz transformations;18
2.5;1.5 The Minkowski diagram;20
3;2 General Relativity: apparent acceleration of gravity;27
3.1;2.1 Gravitation as an apparent force;27
3.2;2.2 Principle of Equivalence;28
3.3;2.3 Lagrangians and motion of bodies;29
3.4;2.4 Integrals of motion;30
4;3 Tests of General Relativity;32
4.1;3.1 The Schwarzschild metric and the gravitational redshift;32
4.2;3.3 Orbits in General Relativity;36
4.3;3.2 Deflection of light;42
5;4 Curved space in cosmology;48
5.1;4.1 Non-Euclidean geometries;48
5.2;4.2 Curvature of 3-space;51
6;5 Finite versus infinite universe in space and time;61
6.1;5.1 Observation of an isotropic universe;61
6.2;5.2 A finite universe in time;61
6.3;5.3 The age of the universe via its “oldest objects”;62
6.4;5.4 Observational discovery of the expanding universe;66
6.5;5.5 Problems with the Hubble constant and the age of the universe;74
7;6 Cosmology and the “first appearance” of dark energy;78
7.1;6.1 A first formulation of dark energy: Einstein’s finite static universe;78
7.2;6.2 Cosmological redshift and Friedmann’s evolving universes;80
7.3;6.3 The Hubble constant in the Friedmann standard model;83
8;7 Einstein’s equations, criticai density and dark energy;89
8.1;7.1 Introduction;89
8.2;7.2 The path to Einstein equations with the cosmological constant;89
8.3;7.3 Interpretations of the cosmological constant;97
9;8 Modei Universes;100
9.1;8.1 Friedmann equation;100
9.2;8.2 The Einstein-de Sitter universe (critical density Friedmann case with no dark energy);102
9.3;8.3 The de Sitter universe (introduction dark energy with no matter);105
9.4;8.4 The Concordance Model (both matter and dark energy so k = 0);105
9.5;8.5 Testing via the small scale Newtonian limit;109
9.6;8.6 Newtonian cosmology and the “k” parameter;112
10;9 Dark energy discovered;115
10.1;9.1 The era of zero-Lambda models;115
10.2;9.2 Cosmological angular-diameter distance estimates;116
10.3;9.3 Cosmological standard candle distance estimates;120
10.4;9.4 More luminous standard candles;121
10.5;9.5 Observational discovery of dark energy;124
10.6;9.6 Type Ia supernovae redshifts and distances vs uniform expansion;126
10.7;9.7 Could it be some problem with the standard candle method?;130
10.8;9.8 Modified gravity theories;132
11;10 Relics: cosmic microwave background (CMB) photons and neutrinos;135
11.1;10.1 The prediction and discovery of the CMB;135
11.2;10.2 The Big Bang components;136
11.3;10.3 The early radiation-dominated universe;139
11.4;10.4 Properties of cosmic microwave background radiation;142
11.5;10.5 Why a CMB thermal spectrum?;146
11.6;10.6 Relic neutrinos and O;157
12;11 Baryonic matter;160
12.1;11.1 Why matter and not also anti-matter?;160
12.2;11.2 Big Bang Nucleosynthesis prediction and processes;163
12.3;11.3 Baryon nucleosynthesis abundances and cosmological implications;165
12.4;11.4 The baryon content of cosmic systems;167
12.5;11.5 The Lyman alpha forest;168
13;12 Discovering dark matter;173
13.1;12.1 Dark matter in the Milky Way disk near the Sun;173
13.2;12.2 Dark matter discovery in clusters via the Virial Theorem;176
13.3;12.3 Subclusters in rich Clusters of galaxies;181
13.4;12.4 Dark matter discovery in Clusters via the Cluster gas;183
13.5;12.5 Dark matter in the Milky Way disk and its halo;187
13.6;12.6 Dark matter discovery inside disk galaxies via rotation curves;192
13.7;12.7 Dark matter discovery in the Local Group;194
13.8;12.8 Dark matter in binary Galaxy systems;197
13.9;12.9 Dark matter discovery via gravitational lensing;200
13.10;12.10 Dark matter in different scales;214
13.11;12.11 The importance and nature of dark matter versus baryonic matter;216
14;13 Dark matter and baryonic structures;218
14.1;13.1 Newton’s concept of gravitational instability;218
14.2;13.2 Basic hydrodynamics;219
14.3;13.3 Jeans Criterion;222
14.4;13.4 Jeans Criterion for collisionless dark matter gas;227
14.5;13.5 Jeans Criterion in the expanding universe;232
14.6;13.6 Evolution of density perturbations;238
14.7;13.7 Jeans mass in the early universe;241
14.8;13.8 Free streaming in dark matter;244
14.9;13.9 Dark matter perturbations;245
14.10;13.10 Dark matter drag;248
14.11;13.11 Termination of gravitational instability;249
14.12;13.12 Dark matter and baryonic structures;250
15;14 Dark energy and gravitating matter from structure in the universe;261
15.1;14.1 Introduction;261
15.2;14.2 Describing structure in the CMB radiation;261
15.3;14.3 The Power Spectrum;268
15.4;14.4 Perturbations of the gravitational potential;274
15.5;14.5 Harrison-Zeldovich spectrum of density perturbations;276
15.6;14.6 Perturbations and CMB;278
15.7;14.7 The cosmic horizon at CMB emission;280
15.8;14.8 The origin of peaks in CMB angular size spectrum;282
15.9;14.9 Cosmological parameters from CMB peaks: additional primary observations;285
15.10;14.10 Spatial Correlations of Galaxies;290
15.11;14.11 The CMB and the baryon acoustic oscillation (BAO) spectrum;298
15.12;14.12 The dark energy equation of state: is dark energy density a function of time?;302
15.13;14.13 Dark energy determined from gravitational lensing of the CMB;304
15.14;14.14 Cosmic 3D space: finite or infinite?;305
16;15 The local path to dark energy;312
16.1;15.1 A gravitating system within dark energy: the zero-gravity radius;312
16.2;15.2 Dynamical structure of a gravitating system within dark energy;317
16.3;15.3 Dark energy and determination of mass in systems of galaxies;321
16.4;15.4 Towards local measurement of dark energy;325
16.5;15.5 The Hubble law and dark energy;328
16.6;15.6 Redshift asymmetry as signature of dark energy;332
17;16 Cosmological inflation;340
17.1;16.1 Physics of the vacuum;340
17.2;16.2 Why does the universe expand?;344
17.3;16.3 Why is the universe uniform?;348
17.4;16.4 Scalar fields;351
17.5;16.5 Equation of motion;353
17.6;16.6 Reheating after inflation;356
17.7;16.7 Density perturbations and gravitational waves;356
18;17 Cosmic internal symmetry;358
18.1;17.1 Time-independent parameters of the Metagalaxy;358
18.2;17.2 The Friedmann integrals;360
18.3;17.3 The physics behind COINS;364
18.4;17.4 Coincidence problem;368
18.5;17.5 Dicke’s flatness problem and solutions;370
18.6;17.6 Big numbers;373
18.7;17.7 Extra dimensions?;374
18.8;17.8 New naturalness;380
18.9;17.9 Protogalactic perturbations;381
19;Bibliography;385
20;Index;406