Byrd / Chernin / Teerikorpi | Paths to Dark Energy | E-Book | sack.de
E-Book

E-Book, Englisch, Band 2, 416 Seiten

Reihe: De Gruyter Studies in Mathematical PhysicsISSN

Byrd / Chernin / Teerikorpi Paths to Dark Energy

Theory and Observation
1. Auflage 2012
ISBN: 978-3-11-025878-3
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Theory and Observation

E-Book, Englisch, Band 2, 416 Seiten

Reihe: De Gruyter Studies in Mathematical PhysicsISSN

ISBN: 978-3-11-025878-3
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This work provides the current theory and observations behind the cosmological phenomenon of dark energy. The approach is comprehensive with rigorous mathematical theory and relevant astronomical observations discussed in context. The book treats the background and history starting with the new-found importance of Einstein’s cosmological constant (proposed long ago) in dark energy formulation, as well as the frontiers of dark energy. The authors do not presuppose advanced knowledge of astronomy, and basic mathematical concepts used in modern cosmology are presented in a simple, but rigorous way. All this makes the book useful for both astronomers and physicists, and also for university students of physical sciences.
Byrd / Chernin / Teerikorpi Paths to Dark Energy jetzt bestellen!

Zielgruppe


Theoretical Physicists, Cosmologists, Lecturers and Graduate Students

Weitere Infos & Material


1;Preface;5
2;1 The start of the paths;13
2.1;1.1 Newton’s absolute space and time;13
2.2;1.2 Light versus absolute space and time;14
2.3;1.3 Space-time events and intervals;16
2.4;1.4 Space-time measurements and Lorentz transformations;18
2.5;1.5 The Minkowski diagram;20
3;2 General Relativity: apparent acceleration of gravity;27
3.1;2.1 Gravitation as an apparent force;27
3.2;2.2 Principle of Equivalence;28
3.3;2.3 Lagrangians and motion of bodies;29
3.4;2.4 Integrals of motion;30
4;3 Tests of General Relativity;32
4.1;3.1 The Schwarzschild metric and the gravitational redshift;32
4.2;3.3 Orbits in General Relativity;36
4.3;3.2 Deflection of light;42
5;4 Curved space in cosmology;48
5.1;4.1 Non-Euclidean geometries;48
5.2;4.2 Curvature of 3-space;51
6;5 Finite versus infinite universe in space and time;61
6.1;5.1 Observation of an isotropic universe;61
6.2;5.2 A finite universe in time;61
6.3;5.3 The age of the universe via its “oldest objects”;62
6.4;5.4 Observational discovery of the expanding universe;66
6.5;5.5 Problems with the Hubble constant and the age of the universe;74
7;6 Cosmology and the “first appearance” of dark energy;78
7.1;6.1 A first formulation of dark energy: Einstein’s finite static universe;78
7.2;6.2 Cosmological redshift and Friedmann’s evolving universes;80
7.3;6.3 The Hubble constant in the Friedmann standard model;83
8;7 Einstein’s equations, criticai density and dark energy;89
8.1;7.1 Introduction;89
8.2;7.2 The path to Einstein equations with the cosmological constant;89
8.3;7.3 Interpretations of the cosmological constant;97
9;8 Modei Universes;100
9.1;8.1 Friedmann equation;100
9.2;8.2 The Einstein-de Sitter universe (critical density Friedmann case with no dark energy);102
9.3;8.3 The de Sitter universe (introduction dark energy with no matter);105
9.4;8.4 The Concordance Model (both matter and dark energy so k = 0);105
9.5;8.5 Testing via the small scale Newtonian limit;109
9.6;8.6 Newtonian cosmology and the “k” parameter;112
10;9 Dark energy discovered;115
10.1;9.1 The era of zero-Lambda models;115
10.2;9.2 Cosmological angular-diameter distance estimates;116
10.3;9.3 Cosmological standard candle distance estimates;120
10.4;9.4 More luminous standard candles;121
10.5;9.5 Observational discovery of dark energy;124
10.6;9.6 Type Ia supernovae redshifts and distances vs uniform expansion;126
10.7;9.7 Could it be some problem with the standard candle method?;130
10.8;9.8 Modified gravity theories;132
11;10 Relics: cosmic microwave background (CMB) photons and neutrinos;135
11.1;10.1 The prediction and discovery of the CMB;135
11.2;10.2 The Big Bang components;136
11.3;10.3 The early radiation-dominated universe;139
11.4;10.4 Properties of cosmic microwave background radiation;142
11.5;10.5 Why a CMB thermal spectrum?;146
11.6;10.6 Relic neutrinos and O;157
12;11 Baryonic matter;160
12.1;11.1 Why matter and not also anti-matter?;160
12.2;11.2 Big Bang Nucleosynthesis prediction and processes;163
12.3;11.3 Baryon nucleosynthesis abundances and cosmological implications;165
12.4;11.4 The baryon content of cosmic systems;167
12.5;11.5 The Lyman alpha forest;168
13;12 Discovering dark matter;173
13.1;12.1 Dark matter in the Milky Way disk near the Sun;173
13.2;12.2 Dark matter discovery in clusters via the Virial Theorem;176
13.3;12.3 Subclusters in rich Clusters of galaxies;181
13.4;12.4 Dark matter discovery in Clusters via the Cluster gas;183
13.5;12.5 Dark matter in the Milky Way disk and its halo;187
13.6;12.6 Dark matter discovery inside disk galaxies via rotation curves;192
13.7;12.7 Dark matter discovery in the Local Group;194
13.8;12.8 Dark matter in binary Galaxy systems;197
13.9;12.9 Dark matter discovery via gravitational lensing;200
13.10;12.10 Dark matter in different scales;214
13.11;12.11 The importance and nature of dark matter versus baryonic matter;216
14;13 Dark matter and baryonic structures;218
14.1;13.1 Newton’s concept of gravitational instability;218
14.2;13.2 Basic hydrodynamics;219
14.3;13.3 Jeans Criterion;222
14.4;13.4 Jeans Criterion for collisionless dark matter gas;227
14.5;13.5 Jeans Criterion in the expanding universe;232
14.6;13.6 Evolution of density perturbations;238
14.7;13.7 Jeans mass in the early universe;241
14.8;13.8 Free streaming in dark matter;244
14.9;13.9 Dark matter perturbations;245
14.10;13.10 Dark matter drag;248
14.11;13.11 Termination of gravitational instability;249
14.12;13.12 Dark matter and baryonic structures;250
15;14 Dark energy and gravitating matter from structure in the universe;261
15.1;14.1 Introduction;261
15.2;14.2 Describing structure in the CMB radiation;261
15.3;14.3 The Power Spectrum;268
15.4;14.4 Perturbations of the gravitational potential;274
15.5;14.5 Harrison-Zeldovich spectrum of density perturbations;276
15.6;14.6 Perturbations and CMB;278
15.7;14.7 The cosmic horizon at CMB emission;280
15.8;14.8 The origin of peaks in CMB angular size spectrum;282
15.9;14.9 Cosmological parameters from CMB peaks: additional primary observations;285
15.10;14.10 Spatial Correlations of Galaxies;290
15.11;14.11 The CMB and the baryon acoustic oscillation (BAO) spectrum;298
15.12;14.12 The dark energy equation of state: is dark energy density a function of time?;302
15.13;14.13 Dark energy determined from gravitational lensing of the CMB;304
15.14;14.14 Cosmic 3D space: finite or infinite?;305
16;15 The local path to dark energy;312
16.1;15.1 A gravitating system within dark energy: the zero-gravity radius;312
16.2;15.2 Dynamical structure of a gravitating system within dark energy;317
16.3;15.3 Dark energy and determination of mass in systems of galaxies;321
16.4;15.4 Towards local measurement of dark energy;325
16.5;15.5 The Hubble law and dark energy;328
16.6;15.6 Redshift asymmetry as signature of dark energy;332
17;16 Cosmological inflation;340
17.1;16.1 Physics of the vacuum;340
17.2;16.2 Why does the universe expand?;344
17.3;16.3 Why is the universe uniform?;348
17.4;16.4 Scalar fields;351
17.5;16.5 Equation of motion;353
17.6;16.6 Reheating after inflation;356
17.7;16.7 Density perturbations and gravitational waves;356
18;17 Cosmic internal symmetry;358
18.1;17.1 Time-independent parameters of the Metagalaxy;358
18.2;17.2 The Friedmann integrals;360
18.3;17.3 The physics behind COINS;364
18.4;17.4 Coincidence problem;368
18.5;17.5 Dicke’s flatness problem and solutions;370
18.6;17.6 Big numbers;373
18.7;17.7 Extra dimensions?;374
18.8;17.8 New naturalness;380
18.9;17.9 Protogalactic perturbations;381
19;Bibliography;385
20;Index;406


Gene Byrd, University of Alabama, Tuscaloosa, USA; Arthur D. Chernin, Moscow State University, Russia; Pekka Teerikorpi and Mauri Valtonen, University of Turku, Finland.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.