Cabeza | Advances in Thermal Energy Storage Systems | E-Book | sack.de
E-Book

E-Book, Englisch, 612 Seiten

Reihe: Woodhead Publishing Series in Energy

Cabeza Advances in Thermal Energy Storage Systems

Methods and Applications
1. Auflage 2014
ISBN: 978-1-78242-096-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Methods and Applications

E-Book, Englisch, 612 Seiten

Reihe: Woodhead Publishing Series in Energy

ISBN: 978-1-78242-096-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Thermal energy storage (TES) technologies store thermal energy (both heat and cold) for later use as required, rather than at the time of production. They are therefore important counterparts to various intermittent renewable energy generation methods and also provide a way of valorising waste process heat and reducing the energy demand of buildings. This book provides an authoritative overview of this key area. Part one reviews sensible heat storage technologies. Part two covers latent and thermochemical heat storage respectively. The final section addresses applications in heating and energy systems. - Reviews sensible heat storage technologies, including the use of water, molten salts, concrete and boreholes - Describes latent heat storage systems and thermochemical heat storage - Includes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry

Cabeza Advances in Thermal Energy Storage Systems jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover;1
2;Advances in Thermal Energy Storage Systems: Methods and Applications;4
3;Copyright;5
4;Contents;6
5;List of contributors;14
6;Woodhead Publishing Series in Energy;16
7;Preface;20
8;1 Introduction to thermal energy storage (TES) systems;22
8.1;1.1 Introduction;22
8.2;1.2 Basic thermodynamics of energy storage;24
8.3;1.3 Overview of system types;32
8.4;1.4 Environmental impact and energy savings produced;40
8.5;1.5 Conclusions;45
8.6;Acknowledgements;47
8.7;References;47
9;Part One Sensible heat storage systems;50
9.1;2 Using water for heat storage in thermal energy storage (TES);52
9.1.1;2.1 Introduction;52
9.1.2;2.2 Principles of sensible heat storage systems involving water;52
9.1.3;2.3 Advances in the use of water for heat storage;59
9.1.4;2.4 Future trends;65
9.1.5;2.5 Sources of further information and advice;66
9.1.6;References;66
9.2;3 Using molten salts and other liquid sensible storage media in
thermal energy storage (TES) systems;70
9.2.1;3.1 Introduction;70
9.2.2;3.2 Principles of heat storage systems using molten salts and other liquid sensible storage media;70
9.2.3;3.3 Advances in molten salt storage;76
9.2.4;3.4 Advances in other liquid sensible storage media;80
9.2.5;3.5 Future trends;82
9.2.6;3.6 Sources of further information and advice;82
9.2.7;Acknowledgements;82
9.2.8;References;82
9.3;4 Using concrete and other solid storage media in thermal energy
storage (TES) systems;86
9.3.1;4.1 Introduction;86
9.3.2;4.2 Principles of heat storage in solid media;87
9.3.3;4.3 State-of-the-art regenerator-type storage;89
9.3.4;4.4 Advances in the use of solid storage media for heat storage;91
9.3.5;References;105
9.4;5 The use of aquifers as thermal energy storage (TES) systems;108
9.4.1;5.1 Introduction;108
9.4.2;5.2 Thermal sources;110
9.4.3;5.3 Aquifier thermal energy storage (ATES);111
9.4.4;5.4 Thermal and geophysical aspects;114
9.4.5;5.5 ATES design;117
9.4.6;5.6 ATES cooling only case study: Richard Stockton College of New Jersey;121
9.4.7;5.7 ATES district heating and cooling with heat pumps case study: Eindhoven University of Technology;127
9.4.8;5.8 ATES heating and cooling with de-icing case study: ATES plant at Stockholm Arlanda Airport;132
9.4.9;5.9 Conclusion;134
9.4.10;Acknowledgements;134
9.4.11;Bibliography;134
9.5;6 The use of borehole thermal energy storage (BTES) systems;138
9.5.1;6.1 Introduction;138
9.5.2;6.2 System integration of borehole thermal energy storage (BTES);142
9.5.3;6.3 Investigation and design of BTES construction sites;144
9.5.4;6.4 Construction of borehole heat exchangers (BHEs) and BTES;151
9.5.5;6.5 Examples of BTES;158
9.5.6;6.6 Conclusion and future trends;167
9.5.7;References;168
9.6;7 Analysis, modeling and simulation of underground thermal
energy storage (UTES) systems;170
9.6.1;7.1 Introduction;170
9.6.2;7.2 Aquifer thermal energy storage (ATES) system;171
9.6.3;7.3 Borehole thermal energy storage (BTES) system;177
9.6.4;7.4 FEFLOW as a tool for simulating underground thermal energy storage (UTES);183
9.6.5;7.5 Applications;184
9.6.6;References;199
9.6.7;Appendix: Nomenclature;201
10;Part Two Latent heat storage systems;206
10.1;8 Using ice and snow in thermal energy storage systems;208
10.1.1;8.1 Introduction;208
10.1.2;8.2 Principles of thermal energy storage systems using snow and ice;210
10.1.3;8.3 Design and implementation of thermal energy storage using snow;215
10.1.4;8.4 Full-scale applications;217
10.1.5;8.5 Future trends;220
10.1.6;References;221
10.2;9 Using solid-liquid phase change materials (PCMs) in thermal
energy storage systems;222
10.2.1;9.1 Introduction;222
10.2.2;9.2 Principles of solid-liquid phase change materials (PCMs);222
10.2.3;9.3 Shortcomings of PCMs in thermal energy storage systems;225
10.2.4;9.4 Methods to determine the latent heat capacity of PCMs;234
10.2.5;9.5 Methods to determine other physical and technical properties of PCMs;242
10.2.6;9.6 Comparison of physical and technical properties of key PCMs;250
10.2.7;9.7 Future trends;258
10.2.8;References;260
10.3;10 Microencapsulation of phase change materials (PCMs) for
thermal energy storage systems;268
10.3.1;10.1 Introduction;268
10.3.2;10.2 Microencapsulation of phase change materials (PCMs);269
10.3.3;10.3 Shape-stabilized PCMs;285
10.3.4;References;298
10.4;11 Design of latent heat storage systems using phase change
materials (PCMs);306
10.4.1;11.1 Introduction;306
10.4.2;11.2 Requirements and considerations for the design;306
10.4.3;11.3 Design methodologies;313
10.4.4;11.4 Applications of latent heat storage systems incorporating PCMs;319
10.4.5;11.5 Future trends;323
10.4.6;References;323
10.5;12 Modelling of heat transfer in phase change materials (PCMs)
for thermal energy storage systems;328
10.5.1;12.1 Introduction;328
10.5.2;12.2 Inherent physical phenomena in phase change materials (PCMs);329
10.5.3;12.3 Modelling methods and approaches for the simulation of heat transfer in PCMs for thermal energy storage;331
10.5.4;12.4 Examples of modelling applications;337
10.5.5;12.5 Future trends;348
10.5.6;12.6 Sources of further information and advice;350
10.5.7;References;352
10.6;13 Integrating phase change materials (PCMs) in thermal energy storage systems for
buildings;354
10.6.1;13.1 Introduction;354
10.6.2;13.2 Integration of phase change materials (PCMs) into the building envelope: physical considerations and heuristic arguments;354
10.6.3;13.3 Organic and inorganic PCMs used in building walls;357
10.6.4;13.4 PCM containment;360
10.6.5;13.5 Measurement of the thermal properties of PCM and PCM integrated in building walls;364
10.6.6;13.6 Experimental studies;368
10.6.7;13.7 Numerical studies;374
10.6.8;13.8 Conclusions;375
10.6.9;References;376
11;Part Three Thermochemical heat storage systems;384
11.1;14 Using thermochemical reactions in thermal energy storage
systems;386
11.1.1;14.1 Introduction;386
11.1.2;14.2 Applications of reversible gas–gas reactions;390
11.1.3;14.3 Applications of reversible gas–solid reactions;392
11.1.4;14.4 Conclusion;401
11.1.5;References;402
11.2;15 Modeling thermochemical reactions in thermal energy storage
systems;404
11.2.1;15.1 Introduction;404
11.2.2;15.2 Grain model technique (Mampel’s approach);410
11.2.3;15.3 Reactor model technique (continuum approach);416
11.2.4;15.4 Molecular simulation methods: quantum chemical simulations (DFT);421
11.2.5;15.5 Molecular simulation methods: statistical mechanics;424
11.2.6;15.6 Molecular simulation methods: molecular dynamics (MD);427
11.2.7;15.7 Properties estimation from molecular dynamics simulation;431
11.2.8;15.8 Examples;434
11.2.9;15.9 Conclusion and future trends;440
11.2.10;Acknowledgements;441
11.2.11;References;442
12;Part Four Systems operation and applications;446
12.1;16 Monitoring and control of thermal energy storage systems;448
12.1.1;16.1 Introduction;448
12.1.2;16.2 Overview of state-of-the-art monitoring and control of thermal energy storage systems;449
12.1.3;16.3 Stand-alone control and monitoring of heating devices;453
12.1.4;16.4 Data logging and heat metering of heating devices;457
12.1.5;16.5 Future trends in the monitoring and control of thermal storage systems;461
12.1.6;16.6 Sources of further information and advice;468
12.1.7;References;468
12.2;17 Thermal energy storage systems for heating and hot water in
residential buildings;470
12.2.1;17.1 Introduction;470
12.2.2;17.2 Requirements for thermal energy storage in individual residential buildings;473
12.2.3;17.3 Sensible heat storage for space heating in individual residential buildings;478
12.2.4;17.4 Latent and sorption heat storage for space heating in individual residential buildings;484
12.2.5;17.5 Thermal energy storage for domestic hot water and combined systems in individual residential buildings;487
12.2.6;17.6 Conclusions and future trends;490
12.2.7;References;492
12.3;18 Thermal energy storage systems for district heating
and cooling;496
12.3.1;18.1 Introduction;496
12.3.2;18.2 District heating and cooling overview;496
12.3.3;18.3 Advances in applications of thermal energy storage systems;497
12.3.4;18.4 Future trends;505
12.3.5;18.5 Sources of further information and advice;505
12.3.6;References;506
12.4;19 Thermal energy storage (TES) systems using heat
from waste;508
12.4.1;19.1 Introduction;508
12.4.2;19.2 Generation of waste process heat in different industries;511
12.4.3;19.3 Application of thermal energy storage (TES) for valorization of waste process heat;513
12.4.4;19.4 Conclusions;519
12.4.5;References;519
12.5;20 Thermal energy storage (TES) systems for cogeneration and
trigeneration systems;522
12.5.1;20.1 Introduction;522
12.5.2;20.2 Overview of cogeneration and trigeneration systems;523
12.5.3;20.3 Design of thermal energy storage for cogeneration and trigeneration systems;526
12.5.4;20.4 Implementation of thermal energy storage in cogeneration and trigeneration systems;530
12.5.5;20.5 Future trends;534
12.5.6;20.6 Conclusion;534
12.5.7;20.7 Sources of further information and advice;535
12.5.8;References;536
12.6;21 Thermal energy storage systems for concentrating solar power
(CSP) technology;540
12.6.1;21.1 Introduction;540
12.6.2;21.2 Commercial concentrating solar power (CSP) plants with integrated storage capacity;544
12.6.3;21.3 Research and development in CSP storage systems;550
12.6.4;21.4 Conclusion;559
12.6.5;References;559
12.7;22 Thermal energy storage (TES) systems for greenhouse
technology;562
12.7.1;22.1 Introduction;562
12.7.2;22.2 Greenhouse heating and cooling;562
12.7.3;22.3 Thermal energy storage (TES) technologies for greenhouse systems;565
12.7.4;22.4 Case studies for TES in greenhouses;569
12.7.5;22.5 Conclusions and future trends;575
12.7.6;References;576
12.8;23 Thermal energy storage (TES) systems for cooling in residential
buildings;578
12.8.1;23.1 Introduction;578
12.8.2;23.2 Sustainable cooling through passive systems in building envelopes;580
12.8.3;23.3 Sustainable cooling through phase change material (PCM) in active systems;588
12.8.4;23.4 Sustainable cooling through sorption systems;594
12.8.5;23.5 Sustainable cooling through seasonal storage;597
12.8.6;23.6 Conclusions;598
12.8.7;Acknowledgements;599
12.8.8;References;599
13;Index;602


Woodhead Publishing Series in Energy
1 Generating power at high efficiency: Combined cycle technology for sustainable energy production
Eric Jeffs 2 Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment
Edited by Kenneth L. Nash and Gregg J. Lumetta 3 Bioalcohol production: Biochemical conversion of lignocellulosic biomass
Edited by Keith W. Waldron 4 Understanding and mitigating ageing in nuclear power plants: Materials and operational aspects of plant life management (PLiM)
Edited by Philip G. Tipping 5 Advanced power plant materials, design and technology
Edited by Dermot Roddy 6 Stand-alone and hybrid wind energy systems: Technology, energy storage and applications
Edited by John K. Kaldellis 7 Biodiesel science and technology: From soil to oil
Jan C. J. Bart, Natale Palmeri and Stefano Cavallaro 8 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume Carbon dioxide (CO2) capture, transport and industrial applications
Edited by M. Mercedes Maroto-Valer 9 Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste
Edited by Joonhong Ahn and Michael J. Apted 10 Wind energy systems: Optimising design and construction for safe and reliable operation
Edited by John D. Sørensen and Jens N. Sørensen 11 Solid oxide fuel cell technology: Principles, performance and operations
Kevin Huang and John Bannister Goodenough 12 Handbook of advanced radioactive waste conditioning technologies
Edited by Michael I. Ojovan 13 Membranes for clean and renewable power applications
Edited by Annarosa Gugliuzza and Angelo Basile 14 Materials for energy efficiency and thermal comfort in buildings
Edited by Matthew R. Hall 15 Handbook of biofuels production: Processes and technologies
Edited by Rafael Luque, Juan Campelo and James Clark 16 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 2: Carbon dioxide (CO2) storage and utilisation
Edited by M. Mercedes Maroto-Valer 17 Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture
Edited by Ligang Zheng 18 Small and micro combined heat and power (CHP) systems: Advanced design, performance, materials and applications
Edited by Robert Beith 19 Advances in clean hydrocarbon fuel processing: Science and technology
Edited by M. Rashid Khan 20 Modern gas turbine systems: High efficiency, low emission, fuel flexible power generation
Edited by Peter Jansohn 21 Concentrating solar power technology: Principles, developments and applications
Edited by Keith Lovegrove and Wes Stein 22 Nuclear corrosion science and engineering
Edited by Damien Féron 23 Power plant life management and performance improvement
Edited by John E. Oakey 24 Electrical drives for direct drive renewable energy systems
Edited by Markus Mueller and Henk Polinder 25 Advanced membrane science and technology for sustainable energy and environmental applications
Edited by Angelo Basile and Suzana Pereira Nunes 26 Irradiation embrittlement of reactor pressure vessels (RPVs) in nuclear power plants
Edited by Naoki Soneda 27 High temperature superconductors (HTS) for energy applications
Edited by Ziad Melhem 28 Infrastructure and methodologies for the justification of nuclear power programmes
Edited by Agustín Alonso 29 Waste to energy conversion technology
Edited by Naomi B. Klinghoffer and Marco J. Castaldi 30 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 1: Fundamentals and performance of low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth 31 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 2: In situ characterization techniques for low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth 32 Combined cycle systems for near-zero emission power generation
Edited by Ashok D. Rao 33 Modern earth buildings: Materials, engineering, construction and applications
Edited by Matthew R. Hall, Rick Lindsay and Meror Krayenhoff 34 Metropolitan sustainability: Understanding and improving the urban environment
Edited by Frank Zeman 35 Functional materials for sustainable energy applications
Edited by John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards 36 Nuclear decommissioning: Planning, execution and international experience
Edited by Michele Laraia 37 Nuclear fuel cycle science and engineering
Edited by Ian Crossland 38 Electricity transmission, distribution and storage systems
Edited by Ziad Melhem 39 Advances in biodiesel production: Processes and technologies
Edited by Rafael Luque and Juan A. Melero 40 Biomass combustion science, technology and engineering
Edited by Lasse Rosendahl 41 Ultra-supercritical coal power plants: Materials, technologies and optimisation
Edited by Dongke Zhang 42 Radionuclide behaviour in the natural environment: Science, implications and lessons for the nuclear industry
Edited by Christophe Poinssot and Horst Geckeis 43 Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture: Solid oxygen- and CO2-carriers
Paul Fennell and E. J. Anthony 44 Materials’ ageing and degradation in light water reactors: Mechanisms, and management
Edited by K. L. Murty 45 Structural alloys for power plants: Operational challenges and high-temperature materials
Edited by Amir Shirzadi and Susan Jackson 46 Biolubricants: Science and technology
Jan C. J. Bart, Emanuele Gucciardi and Stefano Cavallaro 47 Advances in wind turbine blade design and materials
Edited by Povl Brøndsted and Rogier P. L. Nijssen 48 Radioactive waste management and contaminated site clean-up: Processes, technologies and international experience
Edited by William E. Lee, Michael I. Ojovan, Carol M. Jantzen 49 Probabilistic safety assessment for optimum nuclear power plant life management (PLiM): Theory and application of reliability analysis methods...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.