Carmona / Oudjane / Del Moral | Numerical Methods in Finance | Buch | 978-3-642-44407-4 | sack.de

Buch, Englisch, 474 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 739 g

Reihe: Springer Proceedings in Mathematics

Carmona / Oudjane / Del Moral

Numerical Methods in Finance

Bordeaux, June 2010
2012
ISBN: 978-3-642-44407-4
Verlag: Springer

Bordeaux, June 2010

Buch, Englisch, 474 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 739 g

Reihe: Springer Proceedings in Mathematics

ISBN: 978-3-642-44407-4
Verlag: Springer


Numerical methods in finance have emerged as a vital field at the crossroads of probability theory, finance and numerical analysis. Based on presentations given at the workshop Numerical Methods in Finance held at the INRIA Bordeaux (France) on June 1-2, 2010, this book provides an overview of the major new advances in the numerical treatment of instruments with American exercises. Naturally it covers the most recent research on the mathematical theory and the practical applications of optimal stopping problems as they relate to financial applications. By extension, it also provides an original treatment of Monte Carlo methods for the recursive computation of conditional expectations and solutions of BSDEs and generalized multiple optimal stopping problems and their applications to the valuation of energy derivatives and assets. The articles were carefully written in a pedagogical style and a reasonably self-contained manner. The book is geared toward quantitative analysts, probabilists, and applied mathematicians interested in financial applications.

Carmona / Oudjane / Del Moral Numerical Methods in Finance jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


Part I: Particle Methods in Finance.- 1 R. Carmona, P. Del Moral, P. Hu, N, Oudjane: An Introduction to Particle Methods with Financial Applications.- 2.Bhojnarine R. Rambharat: American option valuation with particle filters.- 3.Michael Ludkovski: Monte Carlo Methods for Adaptive Disorder Problems.- Part II: Numerical methods for backward conditional expectations.- 4.Pierre Del Moral, Bruno Rémillard, Sylvain Rubenthale: Monte Carlo approximations of American options that preserve monotonicity and convexity.- 5.Bruno Rémillard, Alexandre Hocquard, Hugues Langlois, and Nicolas Papageorgiou: Optimal Hedging of American Options in Discrete Time.- 6.Gilles Pagès and Benedikt Wilbertz: Optimal Delaunay and Voronoi quantization schemes for pricing American style options.- 7.Bruno Bouchard, Xavier Warin: Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods.- 8.Christian Bender  and Jessica Steiner: Least-squares Monte Carlo for backward SDEs.- 9.Lisa J. Powers, Johanna Nešlehová, and David A. Stephens: Pricing American Options in an infinite activity Lévy market: Monte Carlo and deterministic approaches using a diffusion approximation.- 10.Bowen Zhang and Cornelis W. Oosterlee: Fourier Cosine Expansions and Put–Call Relations for Bermudan Options.- Part III: Numerical methods for energy derivatives.- 11.Klaus Wiebauer: A practical view on valuation of multi-exercise American style options in gas and electricity markets.- 12. Marie Bernhart, Huyen Pham, Peter Tankov and Xavier Warin: Swing Options Valuation: a BSDE with Constrained Jumps Approach.- 13.François Turboult  and Yassine Youlal: Swing option pricing by optimal exercise boundary estimation.- 14.Xavier Warin: Gas Storage Hedging.- 15.J.Frédéric Bonnans, Zhihao Cen, Thibault Christel: Sensitivity analysis of energy contractsby stochastic programming techniques.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.