Buch, Englisch, 256 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 488 g
Reihe: Frontiers in Mathematics
With an Introduction to Commutative Hypercomplex Numbers
Buch, Englisch, 256 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 488 g
Reihe: Frontiers in Mathematics
ISBN: 978-3-7643-8613-9
Verlag: Springer
Hyperbolic numbers are proposed for a rigorous geometric formalization of the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers as a simple extension of the field of complex numbers is extensively studied in the book. In particular, an exhaustive solution of the "twin paradox" is given, followed by a detailed exposition of space-time geometry and trigonometry. Finally, an appendix on general properties of commutative hypercomplex systems with four unities is presented.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
- Mathematik | Informatik Mathematik Geometrie Elementare Geometrie: Allgemeines
Weitere Infos & Material
N-Dimensional Commutative Hypercomplex Numbers.- The Geometries Generated by Hypercomplex Numbers.- Trigonometry in the Minkowski Plane.- Uniform and Accelerated Motions in the Minkowski Space-Time (Twin Paradox).- General Two-Dimensional Hypercomplex Numbers.- Functions of a Hyperbolic Variable.- Hyperbolic Variables on Lorentz Surfaces.- Constant Curvature Lorentz Surfaces.- Generalization of Two-Dimensional Special Relativity (Hyperbolic Transformations and the Equivalence Principle).