Buch, Englisch, 228 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 500 g
Computer-Aided Classification
Buch, Englisch, 228 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 500 g
ISBN: 978-0-323-90184-0
Verlag: William Andrew Publishing
This book is a valuable resource for academicians, researchers, clinicians, postgraduate and graduate students in medical imaging, CAC, computer-aided diagnosis, computer science and engineering, electrical and electronics engineering, biomedical engineering, bioinformatics, bioengineering, and professionals from the IT industry.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Bildgebende Verfahren, Nuklearmedizin, Strahlentherapie Radiologie, Bildgebende Verfahren
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
1. Introduction 2. Review of Related Work 3. Methodology Adopted for Designing of Computer-Aided Classification Systems for Chest Radiographs 4. End-to-end Pre-trained CNN-based Computer-Aided Classification System design for Chest Radiographs 5. Hybrid Computer-Aided Classification System Design Using End-to-end Pre-trained CNN-based Deep Feature Extraction and ANFC-LH Classifier for Chest Radiographs 6. Hybrid Computer-Aided Classification System Design Using End-to-end Pre-trained CNN-based Deep Feature Extraction and PCA-SVM Classifier for Chest Radiographs 7. Light-weight End-to-end Pre-trained CNN-based Computer-Aided Classification System Design for Chest Radiographs 8. Hybrid Computer-Aided Classification System Design Using Light-weight End-to-end Pre-trained CNN-based Deep Feature Extraction and ANFC-LH Classifier for Chest Radiographs 9. Hybrid Computer-Aided Classification System Design Using Light-weight End-to-end Pre-trained CNN-based Deep Feature Extraction and PCA-SVM Classifier for Chest Radiographs 10. Comparative Analysis of Computer-Aided Classification Systems Designed for Chest Radiographs: Conclusion and Future Scope