Chang / Bai | Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing | E-Book | sack.de
E-Book

E-Book, Englisch, 528 Seiten

Chang / Bai Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing


1. Auflage 2018
ISBN: 978-1-4987-7434-5
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 528 Seiten

ISBN: 978-1-4987-7434-5
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Combining versatile data sets from multiple satellite sensors with advanced thematic information retrieval is a powerful way for studying complex earth systems. The book Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing offers complete understanding of the basic scientific principles needed to perform image processing, gap filling, data merging, data fusion, machine learning, and feature extraction. Written by two experts in remote sensing, the book presents the required basic concepts, tools, algorithms, platforms, and technology hubs toward advanced integration. By merging and fusing data sets collected from different satellite sensors with common features, we are enabled to utilize the strength of each satellite sensor to the maximum extent. The inclusion of machine learning or data mining techniques to aid in feature extraction after gap filling, data merging and/or data fusion further empowers earth observation, leading to confirm the whole is greater than the sum of its parts. Contemporary applications discussed in this book make all essential knowledge seamlessly integrated by an interdisciplinary manner. These case-based engineering practices uniquely illustrate how to improve such an emerging field of importance to cope with the most challenging real-world environmental monitoring issues.

Chang / Bai Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Introduction of Electromagnetic Radiation and Remote Sensing. Remote Sensing Sensors and Platforms. Image Processing Techniques in Remote Sensing. Concepts and Perspective of Image Fusion in Remote Sensing. Image Fusion Algorithms. Performance Evaluation of Image Fusion. Feature Extraction via Inverse Modeling - an Overview. Data Mining Methods. An Integrative Approach. Land Use and Land Cover Changes. Air Quality Management. Water Quality Management. Conclusions.


Ni-Bin Chang is currently a professor with the Civil, Environmental, and Construction Engineering Department at the University of Central Florida. He has authored and coauthored over 230 peer-reviewed journal articles, seven books and 220 conference papers. He is a Fellow of the Royal Society of Chemistry (F.RSC) in the United Kingdom (July, 2015), the International Society of Optics and Photonics (F.SPIE) (Dec., 2014), the American Association for the Advancement of Science (F.AAAS) (Feb., 2012), the American Society of Civil Engineers (F.ASCE) (April, 2009), and a Foreign Member of the European Academy of Sciences (M.EAS) (Nov., 2008). He is also a senior member of Institute of Electrical and Electronics Engineers (IEEE) (since 2012). During Aug. 2012 and Aug. 2014, Prof. Chang has served on a number of professional and government positions including the program director of the Hydrologic Sciences Program and Cyber-innovation Sustainability Science and Engineering Program at the National Science Foundation in the US. He is currently an editor-in-chief, associate editor, or editorial board member of over 30 professional



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.