Buch, Englisch, 182 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 435 g
AI Applications in Environmental Pollution Mapping, Analysis and Mitigation
Buch, Englisch, 182 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 435 g
ISBN: 978-1-032-69998-1
Verlag: CRC Press
With rapid advancements in AI, this book reveals how AI can be a powerful tool in reducing pollution and fostering sustainability. It highlights the integration of geospatial techniques with AI for enhancing capabilities in mapping, analysis, and mitigation of environmental pollution. Starting with foundational concepts in AI, geospatial technology, and pollution, the book addresses air, water, soil and thermal pollution, emphasizing their harmful impacts. Through real-world case studies and advanced research, it showcases AI and geospatial technology's revolutionary role in pollution mitigation, exploring AI-driven sensors, satellite imagery, and associated networks for precise and efficient pollution monitoring and management.
Zielgruppe
Academic, Postgraduate, and Professional Reference
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Umwelttechnik | Umwelttechnologie Umwelttechnik
- Geowissenschaften Umweltwissenschaften Umweltwissenschaften
- Geowissenschaften Geologie GIS, Geoinformatik
- Sozialwissenschaften Politikwissenschaft Regierungspolitik Wirtschafts- und Finanzpolitik
- Wirtschaftswissenschaften Volkswirtschaftslehre Wirtschaftspolitik, politische Ökonomie
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
Weitere Infos & Material
Preface. Acknowledgement. Geospatial Approaches for Environmental Pollution Mapping, Analysis and Mitigation. AI-Driven Approaches for Pollution Mapping and Mitigation. Groundwater Quality and Human Health Risk Assessment in India: Leveraging GeoAI for Environmental Monitoring. An Integrated Stratagem for Soil Pollution Assessment Utilizing Geospatial Tools and Machine Learning Approach. Statistical Approach to Evaluate Spatio-Temporal Relationship of Crop Residue Burning and Land Surface Temperature Over a Decade: Case Study of Punjab. Land Resource Mapping Framework for Delhi City using Urban Sprawl Modelling Methods. Environmental Intelligence: Mapping the Transforming Landscape through Artificial Intelligence and Satellite Data. Exploring the Integration of Machine Learning for Environmental Pollution and Flood Risk Assessment: A Comprehensive Review. Geo-AI for Urban Planning. Spectral Unmixing for Pollution Assessment in Water Bodies. Assessing the Trend of Carbon Storage Changes from 1990 to 2020 Based on Land Use Changes: A Comparative Study between Hong Kong and Shenzhen. Harnessing AI in Decision Support Systems for Comprehensive Pollution Management. Index. About the Editors.