Buch, Englisch, 120 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 850 g
Theory & Practice
Buch, Englisch, 120 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 850 g
Reihe: Studies in Fuzziness and Soft Computing
ISBN: 978-3-540-28459-8
Verlag: Springer
Genetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in many disciplines. However, most GAs employed in practice nowadays are unable to learn genetic linkage and suffer from the linkage problem. The linkage learning genetic algorithm (LLGA) was proposed to tackle the linkage problem with several specially designed mechanisms. While the LLGA performs much better on badly scaled problems than simple GAs, it does not work well on uniformly scaled problems as other competent GAs. Therefore, we need to understand why it is so and need to know how to design a better LLGA or whether there are certain limits of such a linkage learning process. This book aims to gain better understanding of the LLGA in theory and to improve the LLGA's performance in practice. It starts with a survey of the existing genetic linkage learning techniques and describes the steps and approaches taken to tackle the research topics, including using promoters, developing the convergence time model, and adopting subchromosomes.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Biotechnologie Industrielle Biotechnologie
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Introduction.- Genetic Algorithms and Genetic Linkage.- Genetic Linkage Learning Techniques.- Linkage Learning Genetic Algorithm.- Preliminaries: Assumptions and the Test Problem.- A First Improvement: Using Promoters.- Convergence Time for the Linkage Learning Genetic Algorithm.-Introducing Subchromosome Representations.- Conclusions.