E-Book, Englisch, Band 18, 444 Seiten, eBook
Chen / Jasin / Shi The Elements of Joint Learning and Optimization in Operations Management
1. Auflage 2022
ISBN: 978-3-031-01926-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 18, 444 Seiten, eBook
Reihe: Springer Series in Supply Chain Management
ISBN: 978-3-031-01926-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Part 1: Generic Tools.- Chapter 1: The Stochastic Multi-armed Bandit Problem.- Chapter 2: Reinforcement Learning.- Chapter 3: Optimal Learning and Optimal Design.- Part 2: Price Optimization.- Chapter 4: Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art.- Chapter 5: Learning and Pricing with Inventory Constraints.- Chapter 6: Dynamic Pricing and Demand Learning in Nonstationary Environments.- Chapter 7: Pricing with High-Dimensional Data.- Part 3: Assortment Optimization.- Chapter 8: Nonparametric Estimation of Choice Models.- Chapter 9: The MNL-Bandit Problem.- Chapter 10: Dynamic Assortment Optimization: Beyond MNL Model.- Part 4: Inventory Optimization.- Chapter 11: Inventory Control with Censored Demand.- Chapter 12: Joint Pricing and Inventory Control with Demand Learning.- Chapter 13: Optimization in the Small-Data, Large-Scale Regime.- Part 5: Healthcare Operations.- Chapter 14: Bandit Procedures for Designing Patient-Centric Clinical Trials.- Chapter 15: Dynamic Treatment Regimes.