Chen / Kling | Business Analytics with Python | Buch | 978-1-3986-1728-5 | sack.de

Buch, Englisch, 440 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 884 g

Chen / Kling

Business Analytics with Python

Essential Skills for Business Students
1. Auflage 2025
ISBN: 978-1-3986-1728-5
Verlag: Kogan Page

Essential Skills for Business Students

Buch, Englisch, 440 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 884 g

ISBN: 978-1-3986-1728-5
Verlag: Kogan Page


Data-driven decision-making is a fundamental component of business success. Use this textbook to learn the core knowledge and techniques for analyzing business data with Python programming. Business Analytics with Python assumes no prior knowledge or experience in computer science, presenting the technical aspects of the subject in an accessible, introductory way for students on business courses. It features chapters on linear regression, neural networks and cluster analysis, with a running case study that enables students to apply their knowledge. Students will also benefit from real-life examples to show how business analysis has been used for such tasks as customer churn prediction, credit card fraud detection and sales forecasting. This book presents a holistic approach to business analytics: in addition to Python, it covers mathematical and statistical concepts, essential machine learning methods and their applications. Business Analytics with Python comes complete with practical exercises and activities, learning objectives and chapter summaries as well as self-test quizzes. It is supported by online resources that include lecturer PowerPoint slides, study guides, sample code and datasets and interactive worksheets. This textbook is ideal for students taking upper level undergraduate and postgraduate modules on analytics as part of their business, management or finance degrees.
Chen / Kling Business Analytics with Python jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Section - ONE: Introduction and Preliminaries;Chapter - 01: Introduction;Chapter - 02: Getting started with Python;Chapter - 03: Data wrangling;Chapter - 04: Review of mathematics;Chapter - 05: Data visualisation with Python;Section - TWO: Methods and TechniquesChapter - 06: Linear Regression;Chapter - 07: Logistic Regression;Chapter - 08: Neural Networks;Chapter - 09: K-Nearest Neighbours;Chapter - 10: Naive Bayes;Chapter - 11: Tree-based Methods;Chapter - 12: Kernel Machines;Chapter - 13: Principal Component Analysis;Chapter - 14: Cluster Analysis;Section - THREE: Applications and Tools;Chapter - 15: Business Analytics Case Studies;Chapter - 16: Machine Learning Web Tools


Kling, Gerhard
Gerhard Kling is a Professor in Finance at the University of Aberdeen. He has worked in higher education for over 18 years (SOAS, University of Southampton, UWE, Utrecht University). His current interests focus on machine learning (ML), artificial intelligence (AI), and their applications in FinTech and Green Finance.

Chen, Bowei
Bowei Chen is an Associate Professor of Marketing Analytics and Data Science at the Adam Smith Business School, University of Glasgow. He is also the Programme Director of the MSc in Finance and Management and an ESRC IAA Reviewer.

Bowei Chen is Associate Professor of Marketing Analytics and Data Science at the Adam Smith Business School, University of Glasgow, UK. He is also the Programme Director of the MSc in Finance and Management and an ESRC IAA Reviewer. Gerhard Kling is Professor in Finance at the University of Aberdeen, UK. He has worked in higher education for over 18 years (SOAS, University of Southampton, UWE, Utrecht University).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.