Buch, Englisch, 239 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 400 g
Acquisition, Advanced Analytics, and Plant Physiology-informed Artificial Intelligence
Buch, Englisch, 239 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 400 g
Reihe: Agriculture Automation and Control
ISBN: 978-3-031-52647-3
Verlag: Springer Nature Switzerland
This book details the foundations of the plant physiology-informed machine learning (PPIML) and the principle of tail matching (POTM) framework. It is the 9th title of the "Agriculture Automation and Control" book series published by Springer.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Agrarwissenschaften Agrarwissenschaften
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau Konstruktionslehre, Bauelemente, CAD
- Technische Wissenschaften Technik Allgemein Konstruktionslehre und -technik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Naturwissenschaften Biowissenschaften Botanik Pflanzenphysiologie, Photosynthese
Weitere Infos & Material
Part I Why Big Data Is Not Smart Yet?.- 1. Introduction.- 2. Why Do Big Data and Machine Learning Entail the Fractional Dynamics?.- Part II Smart Big Data Acquisition Platforms.- 3. Small Unmanned Aerial Vehicles (UAVs) and Remote Sensing Payloads.- 4. The Edge-AI Sensors and Internet of Living Things (IoLT).- 5. The Unmanned Ground Vehicles (UGVs) for Digital Agriculture.- Part III Advanced Big Data Analytics, Plant Physiology-informed Machine Learning, and Fractional-order Thinking.- 6. Fundamentals of Big Data, Machine Learning, and Computer VisionWorkflow.- 7. A Low-cost Proximate Sensing Method for Early Detection of Nematodes inWalnut Using Machine Learning Algorithms.- 8. Tree-level Evapotranspiration Estimation of Pomegranate Trees Using Lysimeter and UAV Multispectral Imagery.- 9. Individual Tree-level Water Status Inference Using High-resolution UAV Thermal Imagery and Complexity-informed Machine Learning.- 10. Scale-aware Pomegranate Yield Prediction Using UAV Imagery and Machine Learning.- Part IV Towards Smart Big Data in Digital Agriculture.- 11. Intelligent Bugs Mapping and Wiping (iBMW): An Affordable Robot-Driven Robot for Farmers.- 12. A Non-invasive Stem Water Potential Monitoring Method Using Proximate Sensor and Machine Learning Classification Algorithms.- 13. A Low-cost Soil Moisture Monitoring Method by Using Walabot and Machine Learning Algorithms.- 14. Conclusions and Future Research.