Buch, Englisch, 444 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 692 g
Buch, Englisch, 444 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 692 g
Reihe: Springer Series in Supply Chain Management
ISBN: 978-3-031-01928-9
Verlag: Springer International Publishing
This book examines recent developments in Operations Management, and focuses on four major application areas: dynamic pricing, assortment optimization, supply chain and inventory management, and healthcare operations. Data-driven optimization in which real-time input of data is being used to simultaneously learn the (true) underlying model of a system and optimize its performance, is becoming increasingly important in the last few years, especially with the rise of Big Data.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Big Data
- Wirtschaftswissenschaften Betriebswirtschaft Bereichsspezifisches Management Einkauf, Logistik, Supply-Chain-Management
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
- Naturwissenschaften Physik Angewandte Physik Soziophysik, Wirtschaftsphysik
Weitere Infos & Material
Part 1: Generic Tools.- Chapter 1: The Stochastic Multi-armed Bandit Problem.- Chapter 2: Reinforcement Learning.- Chapter 3: Optimal Learning and Optimal Design.- Part 2: Price Optimization.- Chapter 4: Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art.- Chapter 5: Learning and Pricing with Inventory Constraints.- Chapter 6: Dynamic Pricing and Demand Learning in Nonstationary Environments.- Chapter 7: Pricing with High-Dimensional Data.- Part 3: Assortment Optimization.- Chapter 8: Nonparametric Estimation of Choice Models.- Chapter 9: The MNL-Bandit Problem.- Chapter 10: Dynamic Assortment Optimization: Beyond MNL Model.- Part 4: Inventory Optimization.- Chapter 11: Inventory Control with Censored Demand.- Chapter 12: Joint Pricing and Inventory Control with Demand Learning.- Chapter 13: Optimization in the Small-Data, Large-Scale Regime.- Part 5: Healthcare Operations.- Chapter 14: Bandit Procedures for Designing Patient-Centric Clinical Trials.- Chapter 15: Dynamic Treatment Regimes.