From Land Use and Land Cover Perspective
Buch, Englisch, 246 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 447 g
ISBN: 978-981-19-3741-5
Verlag: Springer Nature Singapore
Taking China’s Hubei Province as an example, this book focuses on the following four aspects: 1. Development of a multiscale remote sensing dataset of the mining area, including mine target remote sensing dataset, mine (including non-mine areas) remote sensing scene dataset, and semantic segmentation remote sensing dataset of mining land cover. The three datasets are the basis of intelligent interpretation based on deep learning. 2. Research on mine target remote sensing detection method based on deep learning. 3. Research on remote sensing scene classification method of mine and non-mine areas based on deep learning. 4. Research on the fine-scale classification method of mining land cover based on semantic segmentation.
The book is a valuable reference both for scholars, practitioners and as well as graduate students who are interested in mining environment research.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Angewandte Informatik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Geowissenschaften Geographie | Raumplanung Geographie: Allgemeines, Karten & Atlanten
- Geowissenschaften Geologie Geologie
- Geowissenschaften Umweltwissenschaften Umweltüberwachung, Umweltanalytik, Umweltinformatik
Weitere Infos & Material
Preface.-Mine geological environment: An overview.-Multimodal remote sensing science and technology.-Deep learning technology for remote sensing intelligent interpretation.-Remote sensing interpretation signs of mine land occupation type.- Mine remote sensing dataset construction for multi-level tasks.- Mine target detection by remote sensing and deep learning.- Mine remote sensing scene classification by deep learning.- Mine land occupation classification based on machine learning and remote sensing images.- Mine land occupation classification based on deep learning and remote sensing images.- Concluding remarks.