Chiswell / Müller | A Universal Construction for Groups Acting Freely on Real Trees | Buch | 978-1-107-02481-6 | sack.de

Buch, Englisch, Band 195, 297 Seiten, Format (B × H): 150 mm x 229 mm, Gewicht: 544 g

Reihe: Cambridge Tracts in Mathematics

Chiswell / Müller

A Universal Construction for Groups Acting Freely on Real Trees


Erscheinungsjahr 2012
ISBN: 978-1-107-02481-6
Verlag: Cambridge University Press

Buch, Englisch, Band 195, 297 Seiten, Format (B × H): 150 mm x 229 mm, Gewicht: 544 g

Reihe: Cambridge Tracts in Mathematics

ISBN: 978-1-107-02481-6
Verlag: Cambridge University Press


The theory of R-trees is a well-established and important area of geometric group theory and in this book the authors introduce a construction that provides a new perspective on group actions on R-trees. They construct a group RF(G), equipped with an action on an R-tree, whose elements are certain functions from a compact real interval to the group G. They also study the structure of RF(G), including a detailed description of centralizers of elements and an investigation of its subgroups and quotients. Any group acting freely on an R-tree embeds in RF(G) for some choice of G. Much remains to be done to understand RF(G), and the extensive list of open problems included in an appendix could potentially lead to new methods for investigating group actions on R-trees, particularly free actions. This book will interest all geometric group theorists and model theorists whose research involves R-trees.

Chiswell / Müller A Universal Construction for Groups Acting Freely on Real Trees jetzt bestellen!

Weitere Infos & Material


Preface; 1. Introduction; 2. The group RF(G); 3. The R-tree XG associated with RF(G); 4. Free R-tree actions and universality; 5. Exponent sums; 6. Functoriality; 7. Conjugacy of hyperbolic elements; 8. The centralizers of hyperbolic elements; 9. Test functions: basic theory and first applications; 10. Test functions: existence theorem and further applications; 11. A generalization to groupoids; Appendix A. The basics of ?-trees; Appendix B. Some open problems; References; Index.


Müller, Thomas
Thomas Müller is Professor in the School of Mathematical Sciences at Queen Mary, University of London. His main research interests are in geometric, combinatorial and asymptotic group theory, in algebraic combinatorics, number theory and (mostly complex) analysis.

Thomas Müller is Professor in the School of Mathematical Sciences at Queen Mary, University of London. His main research interests are in geometric, combinatorial and asymptotic group theory, in algebraic combinatorics, number theory and (mostly complex) analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.