Cho / Chen | Topological Degree Theory and Applications | Buch | 978-1-58488-648-8 | sack.de

Buch, Englisch, 232 Seiten, Format (B × H): 156 mm x 235 mm, Gewicht: 476 g

Reihe: Mathematical Analysis and Applications

Cho / Chen

Topological Degree Theory and Applications


1. Auflage 2006
ISBN: 978-1-58488-648-8
Verlag: Chapman and Hall/CRC

Buch, Englisch, 232 Seiten, Format (B × H): 156 mm x 235 mm, Gewicht: 476 g

Reihe: Mathematical Analysis and Applications

ISBN: 978-1-58488-648-8
Verlag: Chapman and Hall/CRC


Since the 1960s, many researchers have extended topological degree theory to various non-compact type nonlinear mappings, and it has become a valuable tool in nonlinear analysis. Presenting a survey of advances made in generalizations of degree theory during the past decade, this book focuses on topological degree theory in normed spaces and its applications.

The authors begin by introducing the Brouwer degree theory in Rn, then consider the Leray-Schauder degree for compact mappings in normed spaces. Next, they explore the degree theory for condensing mappings, including applications to ODEs in Banach spaces. This is followed by a study of degree theory for A-proper mappings and its applications to semilinear operator equations with Fredholm mappings and periodic boundary value problems. The focus then turns to construction of Mawhin's coincidence degree for L-compact mappings, followed by a presentation of a degree theory for mappings of class (S+) and its perturbations with other monotone-type mappings. The final chapter studies the fixed point index theory in a cone of a Banach space and presents a notable new fixed point index for countably condensing maps.

Examples and exercises complement each chapter. With its blend of old and new techniques, Topological Degree Theory and Applications forms an outstanding text for self-study or special topics courses and a valuable reference for anyone working in differential equations, analysis, or topology.

Cho / Chen Topological Degree Theory and Applications jetzt bestellen!

Zielgruppe


Graduate students and mathematicians in analysis, differential equations, and topology


Autoren/Hrsg.


Weitere Infos & Material


Brouwer Degree Theory. Leray-Schauder Degree Theory. Degree Theory for Set-Contraction Mappings. Generalized Degree Theory for A-Proper Mappings. Coincidence Degree Theory. Degree Theory for Monotone Type Mappings. Fixed Point Index Theory. References. Index.


Cho, Yeol Je; Chen, Yu-Qing



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.