Cho / Dutta | Spectral Properties of Certain Operators on a Free Hilbert Space and the Semicircular Law | Buch | 978-0-443-15175-0 | sack.de

Buch, Englisch, Format (B × H): 191 mm x 235 mm, Gewicht: 450 g

Cho / Dutta

Spectral Properties of Certain Operators on a Free Hilbert Space and the Semicircular Law


Erscheinungsjahr 2023
ISBN: 978-0-443-15175-0
Verlag: Elsevier Science & Technology

Buch, Englisch, Format (B × H): 191 mm x 235 mm, Gewicht: 450 g

ISBN: 978-0-443-15175-0
Verlag: Elsevier Science & Technology


In Spectral Properties of Certain Operators on a Free Hilbert Space and the Semicircular Law, the authors consider the so-called free Hilbert spaces, which are the Hilbert spaces induced by the usual l2 Hilbert spaces and operators acting on them. The construction of these operators itself is interesting and provides new types of Hilbert-space operators. Also, by considering spectral-theoretic properties of these operators, the authors illustrate how "free-Hilbert-space� Operator Theory is different from the classical Operator Theory. More interestingly, the authors demonstrate how such operators affect the semicircular law induced by the ONB-vectors of a fixed free Hilbert space. Different from the usual approaches, this book shows how "inside� actions of operator algebra deform the free-probabilistic information-in particular, the semicircular law.
Cho / Dutta Spectral Properties of Certain Operators on a Free Hilbert Space and the Semicircular Law jetzt bestellen!

Zielgruppe


The primary audience includes researchers in computational modelling, mathematicians, Computer Scientists, as well as researchers in Biomedical Engineering. 
Other interested audiences will be comprised of researchers in scientific computing.


Autoren/Hrsg.


Weitere Infos & Material


1. Fundamentals 2. Semicircular Elements Induced by Orthogonal Projections 3. Semicircular Elements Induced by Projections On l2-Spaces 4. Jump Operators on Free Hilbert Spaces and Deformed Semicircular Laws 5. Shift Operators on Free Hilbert Spaces and Deformed Semicircular Laws 6. Jump-Shift Operators on Free Hilbert Spaces and Deformed Semicircular Laws


Dutta, Hemen
Dr. Hemen Dutta PhD is a Professor at Gauhati University, India. He also served three other higher learning academic institutions in different capacities prior to joining the Gauhati University. His current research interests are in the areas of nonlinear analysis and mathematical modeling. He is a regular and guest editor of several international indexed journals. He has published 25 books, including Mathematical Modelling and Analysis of Infectious Diseases, New Trends in Applied Analysis and Computational Mathematics, Current Trends in Mathematical Analysis and Its Interdisciplinary Applications from Springer, Concise Introduction to Basic Real Analysis, Topics in Contemporary Mathematical Analysis and Applications, and Mathematical Methods in Engineering and Applied Sciences from CRC Press, and Fractional Order Analysis: Theory, Methods and Applications from Wiley, among others. Dr. Dutta is also an honorary research affiliate and speaker for several international and national events.

Cho, Ilwoo
Dr. Ilwoo Cho is a Professor in the Department of Mathematics and Statistics at St. Ambrose University, Davenport, Iowa, USA. He holds a PhD in Mathematics from the University of Iowa. His research is focused in the areas of Free Probability, Operator Theory, Operator Algebra, Noncommutative Dynamical Systems, and Combinatorics. He has contributed chapters to several books, including Methods of Mathematical Modelling and Computation for Complex Systems, Springer; New Directions in Function Theory: From Complex to Hypercomplex to Noncommutative, Birkhäuser; Nonlinear Analysis: Problems, Applications and Computational Methods, Springer; Complex Function Theory, Operator Theory, Schur Analysis and Systems Theory, Birkhäuser; and Mathematical Methods and Modelling in Applied Sciences, Springer.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.