Chu / Sher | Device Physics of Narrow Gap Semiconductors | E-Book | www.sack.de
E-Book

E-Book, Englisch, 506 Seiten

Reihe: Microdevices

Chu / Sher Device Physics of Narrow Gap Semiconductors


1. Auflage 2009
ISBN: 978-1-4419-1040-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 506 Seiten

Reihe: Microdevices

ISBN: 978-1-4419-1040-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors, a forthcoming second book, offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The final chapter describes the device physics of photoconductive detectors, photovoltaic infrared detectors, super lattices and quantum wells, infrared lasers, and single photon infrared detectors.

Chu / Sher Device Physics of Narrow Gap Semiconductors jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Device Physics of NarrowGap Semiconductors;2
1.1;Foreword;5
1.2;Preface;7
1.3;Contents;9
1.4;1 Introduction;14
1.5;2 Impurities and Defects;18
1.5.1;2.1 Conductivity and Ionization Energies of Impurities and Native Point Defects;18
1.5.1.1;2.1.1 Defects;18
1.5.1.2;2.1.2 Chemical Analysis of Impurity Defects and their Conductivity Modifications;23
1.5.1.3;2.1.3 Theoretical Estimation Method for Impurity Levels;27
1.5.1.4;2.1.4 Doping Behavior;40
1.5.1.5;2.1.5 Experimental Methods;47
1.5.1.5.1;2.1.5.1 High-Frequency and Low-Frequency Capacitance Measurement Principles;47
1.5.1.5.2;2.1.5.2 Deep Level Transient Spectroscopy;50
1.5.1.5.3;2.1.5.3 Photoluminescence Spectroscopy;50
1.5.1.5.4;2.1.5.4 Photothermal Ionization Spectrum Principles;51
1.5.1.5.5;2.1.5.5 Quantum Capacitance Spectrum Technology;52
1.5.1.5.6;2.1.5.6 Positron Annihilation Spectra for MCT;53
1.5.1.5.7;2.1.5.7 Optical Hall Effect Measurements;56
1.5.2;2.2 Shallow Impurities;59
1.5.2.1;2.2.1 Introduction;59
1.5.2.2;2.2.2 Shallow Donor Impurities;62
1.5.2.3;2.2.3 Shallow Acceptor Impurities;67
1.5.3;2.3 Deep Levels;74
1.5.3.1;2.3.1 Deep Level Transient Spectroscopy of HgCdTe;74
1.5.3.2;2.3.2 Deep Level Admittance Spectroscopy of HgCdTe;82
1.5.3.3;2.3.3 Frequency Swept Conductance Spectroscopy;88
1.5.4;2.4 Resonant Defect States;92
1.5.4.1;2.4.1 Capacitance Spectroscopy of Resonant Defect States;93
1.5.4.2;2.4.2 Theoretical Model;96
1.5.4.3;2.4.3 Resonant States of Cation Substitutional Impurities;98
1.5.5;2.5 Photoluminescence Spectroscopy of Impurities and Defects;100
1.5.5.1;2.5.1 Introduction;100
1.5.5.2;2.5.2 Theoretical Background for Photoluminescence;102
1.5.5.3;2.5.3 Infrared PL from an Sb-Doped HgCdTe;116
1.5.5.4;2.5.4 Infrared PL in As-doped HgCdTe Epilayers;121
1.5.5.5;2.5.5 Behavior of Fe as an Impurity in HgCdTe;126
1.5.6;References;132
1.6;3 Recombination;138
1.6.1;3.1 Recombination Mechanisms and Life Times;138
1.6.1.1;3.1.1 Recombination Mechanisms;138
1.6.1.2;3.1.2 The Continuity Equation and Lifetimes;140
1.6.1.3;3.1.3 The Principle Recombination Mechanisms and the Resulting Lifetimes of HgCdTe;141
1.6.2;3.2 Auger Recombination;147
1.6.2.1;3.2.1 The Types of Auger Recombination;147
1.6.2.2;3.2.2 Auger Lifetime;148
1.6.3;3.3 Shockley–Read Recombination;157
1.6.3.1;3.3.1 Single-Level Recombination Center;157
1.6.3.2;3.3.2 General Lifetime Analysis;161
1.6.4;3.4 Radiative Recombination;165
1.6.4.1;3.4.1 Radiative Recombination Processes in Semiconductors;165
1.6.4.2;3.4.2 Lifetime of Radiative Recombination;166
1.6.4.3;3.4.3 Radiative Recombination in p-Type HgCdTe Materials;169
1.6.5;3.5 Lifetime Measurements of Minority Carriers;171
1.6.5.1;3.5.1 The Optical Modulation of Infrared Absorption Method;171
1.6.5.2;3.5.2 The Investigation of Minority Carriers Lifetimes in Semiconductors by Microwave Reflection;182
1.6.5.3;3.5.3 The Application of Scanning Photoluminescence for Lifetime Uniformity Measurements;185
1.6.5.4;3.5.4 Experimental Investigation of Minority Carrier Lifetimes in Undoped and p-Type HgCdTe;189
1.6.6;3.6 Surface Recombination;196
1.6.6.1;3.6.1 The Effect of Surface Recombination;196
1.6.6.2;3.6.2 Surface Recombination Rate;201
1.6.6.3;3.6.3 The Effect of Fixed Surface Charge on the Performance of HgCdTe Photoconductive Detectors;203
1.6.7;Appendix 3.A;209
1.6.8;Appendix 3.A;209
1.6.9;Appendix 3.B Sandiford Paper;210
1.6.10;Appendix 3.B Sandiford Paper;210
1.6.11;References;212
1.7;4 Two-Dimensional Surface Electron Gas;215
1.7.1;4.1 MIS Structure;215
1.7.1.1;4.1.1 The Classical Theory of an MIS Device;215
1.7.1.2;4.1.2 Quantum Effects;221
1.7.2;4.2 A Theory That Models Subband Structures;223
1.7.2.1;4.2.1 Introduction;223
1.7.2.2;4.2.2 A Self-Consistent Calculational Model;226
1.7.3;4.3 Experimental Research on Subband Structures;234
1.7.3.1;4.3.1 Quantum Capacitance Subband Structure Spectrum Model;234
1.7.3.2;4.3.2 Quantum Capacitance Spectrum in a Nonquantum Limit;241
1.7.3.3;4.3.3 Experimental Research of Two-Dimensional Gases on the HgCdTe Surface;245
1.7.3.4;4.3.4 Experimental Research of a Two-DimensionalElectron Gas on an InSb Surface;250
1.7.4;4.4 Dispersion Relations and Landau Levels;254
1.7.4.1;4.4.1 Expressions for Dispersion Relationsand Landau Levels;254
1.7.4.2;4.4.2 Mixing of the Wave Functions and the Effective g Factor;259
1.7.5;4.5 Surface Accumulation Layer;264
1.7.5.1;4.5.1 Theoretical Model of n-HgCdTe SurfaceAccumulation Layer;265
1.7.5.2;4.5.2 Theoretical Calculations for an n-HgCdTe Surface Accumulation Layer;267
1.7.5.3;4.5.3 Experimental Results for n-HgCdTe SurfaceAccumulation Layers;269
1.7.5.4;4.5.4 Results of an SdH Measurement;270
1.7.6;4.6 Surfaces and Interfaces;275
1.7.6.1;4.6.1 The Influence of Surface States on the Performance of HgCdTe Photoconductive Detectors;275
1.7.6.2;4.6.2 The Influence of the Surfaceon the Magneto-Resistance of HgCdTe Photoconductive Detectors;281
1.7.6.3;4.6.3 The Influence of Surfaceson the Magneto-Resistance Oscillations of HgCdTe Samples;286
1.7.6.4;4.6.4 The Influence of the Surface on the Correlation Between Resistivity and Temperature for an HgCdTe Photoconductive Detector;288
1.7.7;References;290
1.8;5 Superlattice and Quantum Well;294
1.8.1;5.1 Semiconductor Low-Dimensional Structures;294
1.8.1.1;5.1.1 Band Dispersion Relation;294
1.8.1.2;5.1.2 Density of States;299
1.8.1.3;5.1.3 Optical Transitions and Selection Rules;300
1.8.2;5.2 Band Structure Theory of Low-Dimensional Structures;303
1.8.2.1;5.2.1 Band Structure Theory of Bulk Semiconductors;303
1.8.2.2;5.2.2 Envelope Function Theory for Heterostructures;307
1.8.2.2.1;5.2.2.1 The Luttinger Model;310
1.8.2.2.2;5.2.2.2 The Kane Model;311
1.8.2.2.3;5.2.2.3 The Kane Model in an External Magnetic Field;313
1.8.2.3;5.2.3 Specific Features of Type III Heterostructures;314
1.8.2.3.1;5.2.3.1 Three Different Band Structure Regimes;314
1.8.2.3.2;5.2.3.2 Interface States;315
1.8.2.3.3;5.2.3.3 Consequences of an Inverted Band Structure;316
1.8.3;5.3 Magnetotransport Theory of Two-Dimensional Systems;317
1.8.3.1;5.3.1 Two-Dimensional Electron Gas;317
1.8.3.2;5.3.2 Classical Transport Theory: The Drude Model;319
1.8.3.3;5.3.3 Landau Levels in a Perpendicular Magnetic Field;320
1.8.3.4;5.3.4 The Broadening of the Landau Levels;323
1.8.3.5;5.3.5 Shubnikov-de Haas Oscillations of a 2DEG;324
1.8.3.6;5.3.6 Quantum Hall Effect;326
1.8.4;5.4 Experimental Results on HgTe/HgCdTe Superlattices and QWs;332
1.8.4.1;5.4.1 Optical Transitions of HgTe/HgCdTe Superlattices and Quantum Wells;332
1.8.4.2;5.4.2 Typical SdH Oscillations and the Quantum Hall Effect;336
1.8.4.3;5.4.3 Rashba Spin–Orbit Interaction in n-TypeHgTe Quantum Wells;339
1.8.5;References;345
1.9;6 Devices Physics;351
1.9.1;6.1 HgCdTe Photoconductive Detector;351
1.9.1.1;6.1.1 Brief Introduction to Photoconductive Device Theory;351
1.9.1.2;6.1.2 Device Performance Characterization Parameters;355
1.9.1.3;6.1.3 Noise;358
1.9.1.3.1;6.1.3.1 Thermal Noise;359
1.9.1.3.2;6.1.3.2 Generation–Recombination Noise;360
1.9.1.3.3;6.1.3.3 1/f Noise;360
1.9.1.3.4;6.1.3.4 Amplifier Noise;363
1.9.1.3.5;6.1.3.5 Total Noise;363
1.9.1.3.6;6.1.3.6 Background Noise and Background Limited Detectivity;365
1.9.1.4;6.1.4 The Impact of Carrier Drift and Diffusion on Photoconductive Devices;366
1.9.2;6.2 Photovoltaic Infrared Detectors;370
1.9.2.1;6.2.1 Introduction to Photovoltaic Devices;370
1.9.2.2;6.2.2 Current-Voltage Characteristicfor p–n Junction Photodiodes;373
1.9.2.3;6.2.3 The Photocurrent in a p–n Junction;387
1.9.2.4;6.2.4 Noise Mechanisms in Photovoltaic Infrared Detectors;391
1.9.2.5;6.2.5 Responsivity, Noise Equivalent Power and Detectivity;394
1.9.3;6.3 Metal-Insulator-Semiconductor Infrared Detectors;399
1.9.3.1;6.3.1 MIS Infrared Detector Principles;399
1.9.3.2;6.3.2 The Dark Current in MIS Devices;404
1.9.4;6.4 Low-Dimensional Infrared Detectors;410
1.9.4.1;6.4.1 Introduction;410
1.9.4.2;6.4.2 Basic Principles of QW Infrared Photodetectors;413
1.9.4.3;6.4.3 Bound-to-Continuum State Transition QW Infrared Detector;418
1.9.4.4;6.4.4 Miniband Superlattice QWlPs;425
1.9.4.5;6.4.5 Multiwavelength QW Infrared Detectors;427
1.9.4.6;6.4.6 Quantum-Dots Infrared Detectors;429
1.9.5;6.5 Low-Dimensional Semiconductor Infrared Lasers;437
1.9.5.1;6.5.1 Introduction;437
1.9.5.2;6.5.2 Basics of Intersubband Cascade Lasers;439
1.9.5.3;6.5.3 Basic Structures of Intersubband Cascade Lasers;443
1.9.5.4;6.5.4 Antimony Based Semiconductor Mid-Infrared Lasers;456
1.9.5.5;6.5.5 Interband Cascade Lasers;459
1.9.5.6;6.5.6 Applications of Quantum Cascade Lasers;465
1.9.6;6.6 Single-Photon Infrared Detectors;466
1.9.6.1;6.6.1 Introduction;466
1.9.6.2;6.6.2 Fundamentals of an APD;468
1.9.6.3;6.6.3 The Basic Structure of an APD;474
1.9.6.3.1;6.6.3.1 Guard-Ring APD;477
1.9.6.3.2;6.6.3.2 Inverted APD, Also Known as a Buried APD;477
1.9.6.3.3;6.6.3.3 Beveled-Mesa APD;477
1.9.6.3.4;6.6.3.4 Reach-Through APD;477
1.9.6.4;6.6.4 Fundamentals of a Single-Photon Avalanche Diode (SPAD);478
1.9.6.4.1;6.6.4.1 SPAD Operating Conditions and Performance;479
1.9.6.4.2;6.6.4.2 Two Basic Quenching Circuits;481
1.9.6.5;6.6.5 Examples of Single-Photon Infrared Detectors;484
1.9.6.5.1;6.6.5.1 Si, and Ge Based SPADs;484
1.9.6.5.2;6.6.5.2 III–V Semiconductor SPADs;487
1.9.6.5.3;6.6.5.3 Far-Infrared Single-Electron-Transistor SPADs;488
1.9.7;References;490
1.10;Appendix;499
1.10.1;I Various Quantities for Hg1-xCdxTe;499
1.10.1.1;1 Energy band gap Eg (eV) from (A.1) (Appendix Part II);499
1.10.1.2;2 Wavelengths corresponding to energy gaps Eg (m);502
1.10.1.3;3 Peak-wavelengths of the photo-conductive response peak and the cut-off wavelengths co (m) for samples with a thickness d = 10m (from (A.2) to (A.3) in Appendix Part II);504
1.10.1.4;4 Intrinsic carrier concentrations ni (cm-3) (from (A.4) in Appendix Part II);507
1.10.1.5;5 Electron effective masses at the bottom of conduction band m0/m0 (from (A.12) in Appendix Part II);508
1.10.2;II Some Formulas;510
1.11;Index;512



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.