E-Book, Englisch, 365 Seiten, Web PDF
Chung A Course in Probability Theory
2. Auflage 2014
ISBN: 978-0-08-057040-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 365 Seiten, Web PDF
ISBN: 978-0-08-057040-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Kai Lai Chung is a Professor Emeritus at Stanford University and has taught probability theory for 30 years.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;A Course in Probability Theory;3
3;Copyright Page;5
4;Table of Contents;6
5;Preface;8
6;Preface to the first edition;10
7; Chapter 1. Distribution function;16
7.1;1.1 Monotone functions;16
7.2;1.2 Distribution functions;22
7.3;1.3 Absolutely continuous and singular distributions;25
8;Chapter 2. Measure theory;30
8.1;2.1 Classes of sets;30
8.2;2.2 Probability measures and their distribution functions;35
9;Chapter 3. Random variable. Expectation. Independence;47
9.1;3.1 General definitions;47
9.2;3.2 Properties of mathematical expectation;54
9.3;3.3 Independence;64
10;Chapter 4. Convergence concepts;79
10.1;4.1 Various modes of convergence;79
10.2;4.2 Almost sure convergence; Borel-Cantelli lemma;86
10.3;4.3 Vague convergence;94
10.4;4.4 Continuation;101
10.5;4.5 Uniform integrability; convergence of moments;109
11;Chapter 5. Law of large numbers. Random series;116
11.1;5.1 Simple limit theorems;116
11.2;5.2 Weak law of large numbers;122
11.3;5.3 Convergence of series;130
11.4;5.4 Strong law of large numbers;138
11.5;5.5 Applications;146
11.6;Bibliographical Not;156
12;Chapter 6. Characteristic function;157
12.1;6.1 General properties; convolutions;157
12.2;6.2 Uniqueness and inversion;167
12.3;6.3 Convergence theorems;175
12.4;6.4 Simple applications;181
12.5;6.5 Representation theorems;193
12.6;6.6 Multidimensional case; Laplace transforms;202
12.7;Bibliographical Note;210
13;Chapter 7. Central limit theoremand its ramifications;211
13.1;7.1 Liapounov's theorem;211
13.2;7.2 Lindeberg-Feller theorem;220
13.3;7.3 Ramifications of the central limit theorem;229
13.4;7.4 Error estimation;239
13.5;7.5 Law of the iterated logarithm;246
13.6;7.6 Infinite divisibility;253
13.7;Bibliographical Note;264
14;Chapter 8. Random walk;265
14.1;8.1 Zero-or-one laws;265
14.2;8.2 Basic notions;272
14.3;8.3 Recurrence;281
14.4;8.4 Fine structure;290
14.5;8.5 Continuation;300
14.6;Bibliographical Note;308
15;Chapter 9. Conditioning. Markovproperty. Martingale;310
15.1;9.1 Basic properties of conditional expectation;310
15.2;9.2 Conditional independence; Markov property;321
15.3;9.3 Basic properties of smartingales;333
15.4;9.4 Inequalities and convergence;345
15.5;9.5 Applications;358
15.6;Bibliographical Note;371
15.7;General bibliography;373
15.8;Index;376




