Buch, Englisch, 320 Seiten, Format (B × H): 191 mm x 216 mm, Gewicht: 635 g
Buch, Englisch, 320 Seiten, Format (B × H): 191 mm x 216 mm, Gewicht: 635 g
ISBN: 978-1-107-18486-2
Verlag: Cambridge University Press
This tutorial reference serves as a coherent overview of various statistical and mathematical approaches used in brain network analysis, where modeling the complex structures and functions of the human brain often poses many unique computational and statistical challenges. This book fills a gap as a textbook for graduate students while simultaneously articulating important and technically challenging topics. Whereas most available books are graph theory-centric, this text introduces techniques arising from graph theory and expands to include other different models in its discussion on network science, regression, and algebraic topology. Links are included to the sample data and codes used in generating the book's results and figures, helping to empower methodological understanding in a manner immediately usable to both researchers and students.
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Psychiatrie, Sozialpsychiatrie, Suchttherapie
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Klinische und Innere Medizin Neurologie, Klinische Neurowissenschaft
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Fuzzy-Systeme
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Sozialwissenschaften Psychologie Allgemeine Psychologie Biologische Psychologie, Neuropsychologie
- Interdisziplinäres Wissenschaften Wissenschaften Interdisziplinär Neurowissenschaften, Kognitionswissenschaft
Weitere Infos & Material
1. Statistical preliminary; 2. Brain network nodes and edges; 3. Graph theory; 4. Correlation networks; 5. Big brain network data; 6. Network simulations; 7. Persistent homology; 8. Diffusion on graphs; 9. Sparse networks; 10. Brain network distances; 11. Combinatorial inference for networks; 12. Series expansion of connectivity matrices; 13. Dynamic network models.