Cimiano / Stein / Frank | Robust Argumentation Machines | Buch | 978-3-031-63535-9 | sack.de

Buch, Englisch, Band 14638, 372 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 593 g

Reihe: Lecture Notes in Computer Science

Cimiano / Stein / Frank

Robust Argumentation Machines

First International Conference, RATIO 2024, Bielefeld, Germany, June 5-7, 2024, Proceedings
2024
ISBN: 978-3-031-63535-9
Verlag: Springer Nature Switzerland

First International Conference, RATIO 2024, Bielefeld, Germany, June 5-7, 2024, Proceedings

Buch, Englisch, Band 14638, 372 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 593 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-63535-9
Verlag: Springer Nature Switzerland


This open access book constitutes the proceedings of the First International Conference on Robust Argumentation Machines, RATIO 2024, which took place in Bielefeld, Germany, during June 5-7, 2024.

The 20 full papers and 1 short paper included in the proceedings were carefully reviewed and selected from 24 submissions. They were organized in topical sections as follows:

Argument Mining; Debate Analysis and Deliberation; Argument Acquisition, Annotation and Quality Assessment; Computational Models of Argumentation; Interactive Argumentation, Recommendation and Personalization; and Argument Search and Retrieval.

Cimiano / Stein / Frank Robust Argumentation Machines jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Argument Mining.- Natural language hypotheses in scientific papers and how to tame them: Suggested steps for formalizing complex scientific claims.- Weakly Supervised Claim Localization in Scientific Abstracts.- Argument Mining of Attack and Support Patterns in Dialogical Conversations with Sequential Pattern Mining.- Cluster-Specific Rule Mining for Argumentation-Based Classification.- Debate Analysis and Deliberation.- Automatic Analysis of Political Debates and Manifestos: Successes and Challenges.- PAKT: Perspectivized Argumentation Knowledge Graph and Tool for Deliberation Analysis.- PolArg: Unsupervised Polarity Prediction of Arguments in Real-Time Online Conversations.- Argument Acquisition, Annotation and Quality.- Assessment Are Large Language Models Reliable Argument Quality Annotators.- The Impact of Argument Arrangement on Essay Scoring.- Finding Argument Fragments on Social Media with Corpus Queries and LLMs.- Computational Models of Argumentation.- Enhancing Abstract Argumentation Solvers with Machine Learning-Guided Heuristics: A Feasibility Study.- Ranking Transition-based Medical Recommendations using Assumption-based Argumentation.- Argumentation-based Probabilistic Causal Reasoning.- From Networks to Narratives: Bayes Nets and the problems of argumentation.- Enhancing Argument Generation using Bayesian Networks.- “Do not disturb my circles!” Identifying the Type of Counterfactual at Hand.- Interactive Argumentation, Recommendation and Personalization.- BEA: Building Engaging Argumentation.- Deciphering Personal Argument Styles – A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences.- Argument Search and Retrieval.- Extending the Comparative Argumentative Machine: Multilingualism and Stance Detection.- Objective Argument Summarization in Search.- ArgServices: A Microservice-Based Architecture for Argumentation Machines.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.