Cleophas / Zwinderman Machine Learning in Medicine - Cookbook
2014
ISBN: 978-3-319-04181-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 137 Seiten, eBook
Reihe: SpringerBriefs in Statistics
ISBN: 978-3-319-04181-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
I Cluster Models.- Hierarchical Clustering and K-means Clustering to Identify Subgroups in Surveys (50 Patients).- Density-based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data (50 Patients).- Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships in Individual Future Patients (120 Patients).- II Linear Models.- Linear, Logistic and Cox Regression for Outcome Prediction with Unpaired Data (20, 55 and 60 Patients).- Generalized Linear Models for Outcome Prediction with Paired Data (100 Patients and 139 Physicians).- Generalized Linear Models for Predicting Event-Rates (50 Patients) Exact P-Values.- Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction (250 Patients).- Optimal Scaling of High-sensitivity Analysis of Health Predictors (250 Patients).- Discriminant Analysis for Making a Diagnosis from Multiple Outcomes (45 Patients).- Weighted Least Squares for Adjusting Efficacy Data with Inconsistent Spread (78 Patients).- Partial Correlations for Removing Interaction Effects from Efficacy Data (64 Patients).- Canonical Regression for Overall Statistics of Multivariate Data (250 Patients). III Rules Models.- Neural Networks for Assessing Relationships that are Typically Nonlinear (90 Patients).- Complex Samples Methodologies for Unbiased Sampling (9,678 Persons).- Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups (217 Patients).- Decision Trees for Decision Analysis (1004 and 953 Patients).- Multidimensional Scaling for Visualizing Experienced Drug Efficacies (14 Pain-killers and 42 Patients).- Stochastic Processes for Long Term Predictions from Short Term Observations.- Optimal Binning for Finding High Risk Cut-offs (1445 Families).- Conjoint Analysis for Determining the Most Appreciated Properties of Medicines to Be Developed (15 Physicians).- Index.