Buch, Englisch, 155 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 436 g
A Practical Guide to Leverage Data and Predictive Analytics
Buch, Englisch, 155 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 436 g
Reihe: Springer Series in Supply Chain Management
ISBN: 978-3-030-85854-4
Verlag: Springer International Publishing
From data collection to evaluation and visualization of prediction results, this book provides a comprehensive overview of the process of predicting demand for retailers. Each step is illustrated with the relevant code and implementation details to demystify how historical data can be leveraged to predict future demand. The tools and methods presented can be applied to most retail settings, both online and brick-and-mortar, such as fashion, electronics, groceries, and furniture.
This book is intended to help students in business analytics and data scientists better master how to leverage data for predicting demand in retail applications. It can also be used as a guide for supply chain practitioners who are interested in predicting demand. It enables readers to understand how to leverage data to predict future demand, how to clean and pre-process the data to make it suitable for predictive analytics, what the common caveats are in terms of implementation and how to assess prediction accuracy.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Wirtschaftswissenschaften Betriebswirtschaft Bereichsspezifisches Management Vertrieb
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Einzel- und Großhandel
- Wirtschaftswissenschaften Betriebswirtschaft Bereichsspezifisches Management Einkauf, Logistik, Supply-Chain-Management
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Binnenhandel
Weitere Infos & Material
1. Introduction.- 2. Data Pre-Processing and Modeling Factors.- 3. Common Demand Prediction Methods.- 4. Tree-Based Methods.- 5. Clustering Techniques.- 6. Evaluation and Visualization.- 7. More Advanced Methods.- 8. Conclusion and Advanced Topics.