Colliot | Machine Learning for Brain Disorders | Buch | 978-1-0716-3194-2 | sack.de

Buch, Englisch, Band 197, 1047 Seiten, HC runder Rücken kaschiert, Format (B × H): 183 mm x 260 mm, Gewicht: 2182 g

Reihe: Neuromethods

Colliot

Machine Learning for Brain Disorders


1. Auflage 2023
ISBN: 978-1-0716-3194-2
Verlag: Springer US

Buch, Englisch, Band 197, 1047 Seiten, HC runder Rücken kaschiert, Format (B × H): 183 mm x 260 mm, Gewicht: 2182 g

Reihe: Neuromethods

ISBN: 978-1-0716-3194-2
Verlag: Springer US


This Open Access volume provides readers with an up-to-date and comprehensive guide to both methodological and applicative aspects of machine learning (ML) for brain disorders. The chapters in this book are organized into five parts. Part One presents the fundamentals of ML. Part Two looks at the main types of data used to characterize brain disorders, including clinical assessments, neuroimaging, electro- and magnetoencephalography, genetics and omics data, electronic health records, mobile devices, connected objects and sensors. Part Three covers the core methodologies of ML in brain disorders and the latest techniques used to study them. Part Four is dedicated to validation and datasets, and Part Five discusses applications of ML to various neurological and psychiatric disorders. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory.

Comprehensive and cutting, Machine Learning for Brain Disorders is a valuable resource for researchers and graduate students who are new to this field, as well as experienced researchers who would like to further expand their knowledge in this area. This book will be useful to students and researchers from various backgrounds such as engineers, computer scientists, neurologists, psychiatrists, radiologists, and neuroscientists.

Colliot Machine Learning for Brain Disorders jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


A Non-Technical Introduction to Machine Learning.- Classic Machine Learning Methods.- Deep Learning: Basics and Convolutional Neural Networks (CNN).- Recurrent Neural Networks (RNN) - Architectures, Training Tricks, and Introduction to Influential Research.- Generative Adversarial Networks and Other Generative Models.- Transformers and Visual Transformers.- Clinical Assessment of Brain Disorders.- Neuroimaging in Machine Learning for Brain Disorders.- Electroencephalography and Magnetoencephalography.- Working with Omics Data, An Interdisciplinary Challenge at the Crossroads of Biology and Computer Science.- Electronic Health Records as Source of Research Data.- Mobile Devices, Connected Objects, and Sensors.- Medical Image Segmentation using Deep Learning.- Image Registration: Fundamentals and Recent Advances Based on Deep Learning.- Computer-Aided Diagnosis and Prediction in Brain Disorders.- Subtyping Brain Diseases from Imaging Data.- Data-Driven Disease Progression Modelling.- Computational Pathology for Brain Disorders.- Integration of Multimodal Data.- Evaluating Machine Learning Models and their Diagnostic Value.- Reproducibility in Machine Learning for Medical Imaging.- Interpretability of Machine Learning Methods Applied to Neuroimaging.- A Regulatory Science Perspective on Performance Assessment of Machine Learning Algorithms in Imaging.- Main Existing Datasets for Open Brain Research on Humans.- Machine Learning for Alzheimer’s Disease and Related Dementias.- Machine Learning for Parkinson’s Disease and Related Disorders.- Machine Learning in Neuroimaging of Epilepsy.- Machine Learning in Multiple Sclerosis.- Machine Learning for Cerebrovascular Disorders.- The Role of Artificial Intelligence in Neuro-Oncology Imaging.- Machine Learning for Neurodevelopmental Disorders.- Machine Learning and BrainImaging for Psychiatric Disorders: New Perspectives.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.