Comprehensive Semiconductor Science and Technology | Buch | 978-0-444-53143-8 | sack.de

Buch, Englisch, 3608 Seiten

Comprehensive Semiconductor Science and Technology


Erscheinungsjahr 2011
ISBN: 978-0-444-53143-8
Verlag: Elsevier Science & Technology

Buch, Englisch, 3608 Seiten

ISBN: 978-0-444-53143-8
Verlag: Elsevier Science & Technology


Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world.

The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us.


- Provides a comprehensive global picture of the semiconductor world
- Each of the work's three sections presents a complete description of one aspect of the whole
- Written and Edited by a truly international team of experts
Comprehensive Semiconductor Science and Technology jetzt bestellen!

Zielgruppe


<p>Faculty, Scientists, Researchers and Graduate Students in Physics, Materials Science, (Bio)Chemistry or Engineering Departments at universities worldwide; Additional fields of research to which this text would be relevant include: Optoelectronics, Condensed Matter Science, Surface Science, Magnetism and Quantum Mechanics. Researchers in large corporations and governmental labs working with Semiconductors.</p>

Weitere Infos & Material


Devices and Applications

Materials, Preparation and Properties

Physics and Fundamental Theory


Bhattacharya, Pallab
Pallab Bhattacharya is the Charles M. Vest Distinguished University Professor of Electrical Engineering and Computer Science and the James R. Mellor Professor of Engineering in the Department of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor. He received the M. Eng. and Ph.D. degrees from the University of Sheffield, UK, in 1976 and 1978, respectively. Professor Bhattacharya was an Editor of the IEEE Transactions on Electron Devices and is Editor-in-Chief of Journal of Physics D. He has edited Properties of Lattice-Matched and Strained InGaAs (UK: INSPEC, 1993) and Properties of III-V Quantum Wells and Superlattices (UK: INSPEC, 1996). He has also authored the textbook Semiconductor Optoelectronic Devices (Prentice Hall, 2nd edition). His teaching and research interests are in the areas of compound semiconductors, low-dimensional quantum confined systems, nanophotonics and optoelectronic integrated circuits. He is currently working on highspeed quantum dot lasers, quantum dot infrared photodetectors, photonic crystal quantum dot devices, and spin-based heterostructure devices. From 1978 to 1983, he was on the faculty of Oregon State University, Corvallis, and since 1984 he has been with the University of Michigan. He was an Invited Professor at the Ecole Polytechnic Federale de Lausanne, Switzerland, from 1981 to 1982.

Professor Bhattacharya is a member of the National Academy of Engineering. He has received the John Simon Guggenheim Fellowship, the IEEE (EDS) Paul Rappaport Award, the IEEE (LEOS) Engineering Achievement Award, the Optical Society of America (OSA) Nick Holonyak Award, the SPIE Technical Achievement Award, the Quantum Devices Award of the International Symposium on Compound Semiconductors, and the IEEE (Nanotechnology Council) Nanotechnology Pioneer Award. He has also received the S.S. Attwood Award, the Kennedy Family Research Excellence Award, and the Distinguished Faculty Achievement Award from the University of Michigan. He is a Fellow of the IEEE, the American Physical Society, the Institute of Physics (UK), and the Optical Society of America.

Fornari, Roberto
Professor Roberto Fornari is a professor at the University of Parma in Parma, Italy. From 1981 to 2003, Roberto Fornari was at the Institute for Electronic and Magnetic Materials of the Italian National Research Council, and from 2003 to 2013 he was Director of the Leibniz Institute for Crystal Growth (IKZ) and Full Professor at the Institute of Physics of the Humboldt University, Berlin. His research experience includes bulk and epitaxial semiconductors for advanced applications (GaAs, InP, GaN, AlN and InGaN), semiconducting oxides, solar silicon, silicon nanostructures. His current research focuses on gallium oxide and related alloys for power electronics and UV-detection.

Kamimura, Hiroshi
Hiroshi Kamimura is currently a senior adviser of Tokyo University of Science (TUS), and a guest professor of Research Institute for Science and Technology at the TUS. He was awarded a Doctor of Science in Physics from University of Tokyo in 1959. He worked at Bell-Telephone laboratories at Murray Hill, USA as a Member of Technical Staff in 1961 to 64. In 1965 he became a lecturer, then an associate professor and a professor at Dept. of Physics, Faculty of Science in University of Tokyo. In 1974-75 he worked with Sir Nevill Mott as a guest scholar at Cavendish Laboratory in Cambridge, UK. In 1991 he retired from University of Tokyo, and then he became a professor at Dept of Applied Physics, Faculty of Science at the TUS. His interests are in the theory of condensed matter physics and of materials science, in particular semiconductor physics, high temperature superconductivity and superionic conduction. He was President of physical society of Japan in 1984-85, Chairman of IUPAP semiconductor Commission in 1985-90. He is an honorary fellow of Institute of Physics, UK, a life-fellow of American Physical Society, an emeritus professor of University of Tokyo and an emeritus professor of Tokyo University of Science.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.