Computed Tomography | Buch | 978-1-5106-4687-2 | sack.de

Buch, Englisch, 786 Seiten, Hardback

Reihe: Press Monographs

Computed Tomography

Principles, Design, Artifacts, and Recent Advances

Buch, Englisch, 786 Seiten, Hardback

Reihe: Press Monographs

ISBN: 978-1-5106-4687-2
Verlag: SPIE Press


2021 marks the 50th anniversary of x-ray computed tomography (CT). Over the years, CT has experienced tremendous technological development, driven mainly by clinical needs but also by technology advancements in other fields. Six years after the third edition of Computed Tomography, this fourth edition captures the most recent advances in technology and clinical applications. New to this edition are descriptions of artificial intelligence, machine learning, and deep learning, and their application to image reconstruction, protocol optimization, and workflow. A new chapter covers the principles and advances in dual-energy and spectral CT. A new detector technology, the photon-counting detector, is described in detail, and its impact on CT system and clinical applications is analyzed. Many exciting developments in clinical applications, such as cardiac functional imaging and stroke management, are also covered in detail.
Computed Tomography jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


- Preface
- Nomenclature and Abbreviations
- 1 Introduction
- 1.1 Conventional X-ray Tomography
- 1.2 History of Computed Tomography
- 1.3 Different Generations of CT Scanners
- 1.4 Problems
- References
- 2 Preliminaries
- 2.1 Mathematics Fundamentals
- 2.1.1 Fourier transform and convolution
- 2.1.2 Random variables
- 2.1.3 Linear algebra
- 2.2 Fundamentals of X-ray Physics
- 2.2.1 Production of x rays
- 2.2.2 Interaction of x rays with matter
- 2.3 Measurement of Line Integrals and Data Conditioning
- 2.4 Sampling Geometry and Sinogram
- 2.5 Artificial Intelligence, Machine Learning, and Deep Learning
- 2.5.1 Overview of AI development
- 2.5.2 Neural network structure
- 2.5.3 Neural network training
- 2.5.4 Recent advances in DL
- 2.6 Problems
- References
- 3 Image Reconstruction
- 3.1 Introduction
- 3.2 Intuitive Approach to Image Reconstruction
- 3.3 The Fourier Slice Theorem
- 3.4 The Filtered Backprojection Algorithm
- 3.4.1 Derivation of the filtered back-projection formula
- 3.4.2 Computer implementation
- 3.4.3 Targeted reconstruction
- 3.5 Fan-Beam Reconstruction
- 3.5.1 Reconstruction formula for equiangular sampling
- 3.5.2 Reconstruction formula for equally spaced sampling
- 3.5.3 Fan-beam to parallel-beam rebinning
- 3.6 Iterative Reconstruction
- 3.6.1 Mathematics verses reality
- 3.6.2 The general approach to iterative reconstruction
- 3.6.3 Algebraic reconstruction
- 3.6.4 System modeling process
- 3.6.5 Optimization algorithms
- 3.6.6 Image quality benefit of model-based iterative reconstruction
- 3.6.7 Reconstruction speedup
- 3.7 Deep Learning–based Reconstruction
- 3.7.1 General approach
- 3.7.2 Training dataset selection
- 3.7.3 Determination of the training dataset size
- 3.7.4 Examples of DL-based reconstruction
- 3.8 Problems
- Reference
- 4 Image Presentation
- 4.1 CT Image Display
- 4.2 Volume Visualization
- 4.2.1 Multiplanar reformation
- 4.2.2 MIP, minMIP, and volume rendering
- 4.2.3 Surface rendering
- 4.3 Impact of Visualization Tools
- 4.4 Volume Visualization
- 4.4.1 Clinical utility
- 4.4.2 Hardware technologies
- 4.4.3 File format
- 4.4.4 Typical 3D printing workflow
- 4.5 Problems
- References
- 5 Key Performance Parameters of the CT Scanner
- 5.1 High-Contrast Spatial Resolution
- 5.1.1 In-plane resolution
- 5.1.2 Slice sensitivity profile
- 5.2 Low-Contrast Resolution
- 5.2.1 Factors impacting low-contrast detectability
- 5.2.2 LCD phantoms
- 5.2.3 LCD evaluation methodologies
- 5.3 Temporal Resolution
- 5.4 CT Number Accuracy and Noise
- 5.5 Impact of Iterative Reconstruction on Performance Measurement
- 5.5.1 Performance-metric-based approach
- 5.5.2 Task-based approach
- 5.5.3 Surrogate task with clinical data
- 5.5.4 Surrogate task with nonclinical data
- 5.6 Performance of the Scanogram
- 5.7 Problems
- References
- 6 Major Components of the CT Scanner
- 6.1 System Overview
- 6.2 The X-ray Tube and High-Voltage Generator
- 6.3 The X-ray Detector and Data-Acquisition Electronics
- 6.3.1 Direct-conversion gas detector
- 6.3.2 Indirect-conversion solid-state detector
- 6.3.3 Direct-conversion semiconductor detector
- 6.3.4 General performance parameters
- 6.3.5 Specific performance parameters
- 6.4 The Gantry and Slip Ring
- 6.5 Collimation and Filtration
- 6.6 The Reconstruction Engine
- 6.7 The Patient Table
- 6.8 Problems
- References
- 7 Image Artifacts: Appearances, Causes, and Corrections
- 7.1 What Is an Image Artifact?
- 7.2 Different Appearances of Image Artifacts
- 7.3 Artifacts Related to System Design
- 7.3.1 Aliasing
- 7.3.2 Partial volume
- 7.3.3 Scatter
- 7.3.4 Noise-induced streaks
- 7.4 Artifacts Related to X-ray Tubes
- 7.4.1 Off-focal radiation
- 7.4.2 Tube arcing
- 7.4.3 Tube rotor wobble
- 7.5 Detector-Induced Artifacts
- 7.5.1 Offset, gain, nonlinearity, and radiation damage
- 7.5.2 Primary speed and afterglow
- 7.5.3 Detector response uniformity
- 7.6 Patient-Induced Artifacts
- 7.6.1 Patient motion
- 7.6.2 Beam hardening
- 7.6.3 Metal and high-density object artifacts
- 7.6.4 Incomplete projections
- 7.7 Operator-Induced Artifacts
- 7.8 Problems
- References
- 8 Computer Simulation and Analysis
- 8.1 What Is Computer Simulation?
- 8.2 Simulation Overview
- 8.3 Simulation of Optics
- 8.4 Simulation of Physics-Related Performance
- 8.5 Simulation of a Clinical Study
- 8.6 Problems
- References
- 9 Helical or Spiral CT
- 9.1 Introduction
- 9.1.1 Clinical needs
- 9.1.2 Enabling technologies
- 9.2 Terminology and Reconstruction
- 9.2.1 Helical pitch
- 9.2.2 Basic reconstruction approaches
- 9.3 Slice Sensitivity Profile and Noise
- 9.4 Helically Related Image Artifacts
- 9.4.1 High-pitch helical artifacts
- 9.4.2 Noise-induced artifacts
- 9.4.3 System-misalignment-induced artifacts
- 9.4.4 Helical artifacts caused by object slope
- 9.5 Problems
- References
- 10 Multislice CT
- 10.1 The Need for Multislice CT
- 10.2 Detector Configurations of Multislice CT
- 10.3 Nonhelical Mode of Reconstruction
- 10.4 Multislice Helical Reconstruction
- 10.4.1 2D backprojection algorithm
- 10.4.2 Reconstruction algorithms with 3D backprojection
- 10.4.3 Over-beaming (or over-scanning) compensation
- 10.5 Multislice Artifacts
- 10.5.1 General description
- 10.5.2 Multislice CT cone-beam effects
- 10.5.3 Interpolation-related image artifacts
- 10.5.4 Noise-induced multislice artifacts
- 10.5.5 Tilt artifacts in multislice helical CT
- 10.5.6 Distortion in step-and-shoot mode SSP
- 10.5.7 Artifacts due to geometric inaccuracy
- 10.5.8 Comparison of multislice and single-slice helical CT
- 10.6 Problems
- References
- 11 X-ray Radiation and Dose-Reduction Techniques
- 11.1 Biological Effects of X-ray Radiation
- 11.2 Measurement of X-ray Dose
- 11.2.1 Terminology and the measurement standard
- 11.2.2 Other measurement units and methods
- 11.2.3 Issues with the current CTDI
- 11.3 Methodologies for Dose Reduction
- 11.3.1 Tube-current modulation
- 11.3.2 Umbra-penumbra and overbeam issues
- 11.3.3 Physiological gating
- 11.3.4 Organ-specific dose reduction
- 11.3.5 Protocol optimization and impact of the operator
- 11.3.6 Postprocessing techniques
- 11.3.7 Advanced reconstruction
- 11.4 Problems
- References
- 12 Dual-Energy and Spectral CT
- 12.1 Intuitive Explanation
- 12.1.1 Material differentiation
- 12.1.2 Material representation
- 12.2 Theory of Basis Material Decomposition
- 12.2.1 Basis material
- 12.2.2 Projection-space material decomposition (MD)
- 12.2.3 Image-space material decomposition
- 12.2.4 Multimaterial identification and quantification
- 12.2.5 Noise
- 12.3 Generation of Derivative Images
- 12.3.1 Monochromatic image
- 12.3.2 Basis material transformation
- 12.3.3 Electron density image
- 12.3.4 Effective atomic number image
- 12.4 Data Acquisition
- 12.4.1 Energy-integrating systems
- 12.4.2 Photon-counting system
- 12.5 Clinical Applications
- 12.6 Problems
- References
- 13 Advanced CT Applications
- 13.1 Introduction
- 13.2 Cardiac Imaging
- 13.2.1 Coronary calcium scan
- 13.2.2 Coronary artery imaging
- 13.2.3 Cardiac function
- 13.3 Interventional Procedures
- 13.4 Stroke: CT Perfusion and Multiphase CTA
- 13.4.1 Perfusion
- 13.4.2 Multiphase CTA
- 13.5 Screening and Quantitative CT
- 13.5.1 Lung cancer screening
- 13.5.2 Quantitative CT
- 13.5.3 CT colonography
- 13.6 Impact of Artificial Intelligence
- 13.7 Problems
- References
- Glossary
- Index


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.