Coutanceau / Baranton / Audichon | Hydrogen Electrochemical Production | Buch | 978-0-12-811250-2 | sack.de

Buch, Englisch, 110 Seiten, Format (B × H): 150 mm x 226 mm, Gewicht: 204 g

Coutanceau / Baranton / Audichon

Hydrogen Electrochemical Production


Erscheinungsjahr 2017
ISBN: 978-0-12-811250-2
Verlag: Elsevier Science

Buch, Englisch, 110 Seiten, Format (B × H): 150 mm x 226 mm, Gewicht: 204 g

ISBN: 978-0-12-811250-2
Verlag: Elsevier Science


Hydrogen Electrochemical Production presents different avenues of hydrogen production for energy applications, including current developments and future perspectives, using an interdisciplinary approach. Part of the Hydrogen Energy and Fuel Cell Primers series, the volume synthesizes information from many sources, making it a useful reference for industry professionals, researchers and graduate students. The book examines various methods, explaining their advantages and limitations. The water electrolysis reaction and systems are explored from different points of view, including an assessment of state-of-the-art technologies. Alternatives to water for feeding the electrolysis cell anode and for electrochemical hydrogen production (such as alcohol or other compounds from biomass) are discussed.

Coutanceau / Baranton / Audichon Hydrogen Electrochemical Production jetzt bestellen!

Weitere Infos & Material


1. Introduction
2. Hydrogen production catalytic reforming
3. Hydrogen production from water electrolysis
4. Hydrogen production from biomass electroreforming
5. Conclusion


Baranton, Steve
Stève Baranton obtained his Ph.D. degree in electrochemistry in 2004. He worked conducted research in Canada and Japan before joining IC2MP as Assistant Professor. His current research interests include the development of synthesis methods for nanostructured supported metals using green processes (microwave activation, electrochemical methods, etc.) and solvents (polyols, water) and their application as electrocatalysts in fuel cells, electrolysis cells and electrosynthesis reactors. He also develops in situ spectroscopic methods. He has presented or published over 90 documents related to fuel cells, electrolysis cells and biomass conversion, including articles in reviewed international journals, book chapters, invited lectures and world patents.

Audichon, Thomas
Thomas Audichon obtained his PhD degree in Materials and Electrochemistry in 2014 from the University of Poitiers, France. He has a post-doctoral position at the Institute of Material and Environment of Poitiers (IC2MP). His current research interests include synthesis and characterisation of nanomaterials (oxides and metals) for oxygen reduction reaction and anodic activation of water in electrolysis cells, and formulation of membrane-electrodes assemblies and measurement of electrochemical performances on an electrolysis test bench. He published several papers in international peer reviewed journals on materials for water electrolysis cells.

Coutanceau, Christophe
Christophe Coutanceau obtained his Ph.D. degree in electrochemistry in 1994 at the University of Poitiers, France. He then worked as Assistant Professor at the Laboratory of Catalysis in Organic Chemistry (LACCO) in that same institution, before being promoted in 2008. At present, he is Professor in Physical Chemistry at IC2MP and Director of the Catalysis and Unconventional Media group of the Institute of Chemistry of Poitiers. He is also chair of the Low Temperature and Fuel and Electrolysis Cells axis of the Hydrogen-Systems-Fuel Cells Research Grouping from the French National Council of Scientific Research (CNRS). For more than twenty years, his research interests include development of synthesis methods for nanostructured supported metals using green processes (microwave activation, electrochemical methods, etc.) and solvents (polyols, water) and their application as electrocatalysts in fuel cells, electrolysis cells and electrosynthesis reactors. He is also interested in the valorisation of agroresources using electrochemical methods. He has presented or published over a hundred articles in reviewed international journals, as well as several book chapters, invited lectures and world patents related to fuel cells, electrolysis cells and biomass conversion.

Pollet, Bruno G.
Bruno G. Pollet is a full Professor of Renewable Energy at the Department of Energy and Process Engineering at the Norwegian University of Science and Technology (NTNU) in Trondheim. His research covers a wide range of areas in Electrochemical Engineering, Electrochemical Energy and Sono-electrochemistry (the use of Power Ultrasound in Electrochemistry) from the development of novel materials, hydrogen fuel cell to water treatment/disinfection demonstrators & prototypes. He was a Professor of Energy Materials and Systems at the University of the Western Cape (South Africa) and R&D Director of the National Hydrogen South Africa (HySA) Systems Competence Centre. He was also a co-founder and an Associate Director of the University of Birmingham Centre for Hydrogen and Fuel Cell Research in the UK. He was awarded a Diploma in Chemistry and Material Sciences from the Université Joseph Fourier (France), a BSc (Hons) in Applied Chemistry from Coventry University (UK) and an MSc in Analytical Chemistry from The University of Aberdeen (UK). He also gained his PhD in Physical Chemistry in the field of Electrochemistry and Sonochemistry at the Coventry University Sonochemistry Centre.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.