E-Book, Englisch, 166 Seiten, eBook
Curran / Christen Two Faces of Evil: Cancer and Neurodegeneration
1. Auflage 2010
ISBN: 978-3-642-16602-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 166 Seiten, eBook
Reihe: Research and Perspectives in Alzheimer's Disease
ISBN: 978-3-642-16602-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Two Faces of Evil: Cancer and Neurodegeneration;3
1.1;Foreword;5
1.2;Acknowledgments;7
1.3;Contents;9
1.4;Contributors;11
1.5;Updating the Mammalian Cell Cycle: The Role of Interphase Cdks in Tissue Homeostasis and Cancer;15
1.5.1;1 Mammalian Cdks and the Classical Cell Cycle Model;17
1.5.2;2 Interphase Cdks are Not Essential for the Mammalian Cell Cycle;19
1.5.3;3 Limited Compensatory Activities Among Interphase Cdks;21
1.5.4;4 Interphase Cdks Have Evolved to Drive Proliferation of Highly Specialized Cells;24
1.5.5;5 Cell Cycle Cdks and Cancer;25
1.5.6;6 Are Interphase Cdks Required for Tumor Development?;26
1.5.7;References;29
1.6;The Role of Cdk5 as a Cell Cycle Suppressor in Post-mitotic Neurons;31
1.6.1;1 Introduction;32
1.6.2;2 Cdk5 Plays an Important Role in Neuronal Development;32
1.6.3;3 Cdk5 Serves Important Functions in the Regulation of Synaptic Function;33
1.6.4;4 Cdk5 is a Cell Cycle Suppressor in Post-mitotic Neurons;33
1.6.5;5 Cdk5 Inhibits the Cell Cycle in a Kinase-Independent Fashion;34
1.6.6;6 Cdk5 Inhibits the Cell Cycle by Sequestering E2F1;35
1.6.7;7 The Implications of the Central Role of Cdk5 in Neuronal Cell Cycle Suppression;36
1.6.8;References;38
1.7;Actin-SRF Signaling in the Developing and Mature Murine Brain;40
1.7.1;1 Principles of Actin-SRF Signaling in Brain Cells;40
1.7.1.1;1.1 Actin Dynamics Regulates Gene Expression Upon Activation of MRTF-SRF Signaling;40
1.7.1.2;1.2 Actin Dynamics in Neuronal Network Assembly;41
1.7.1.3;1.3 Actin-MRTF-SRF interplay in Neuronal Signaling;42
1.7.2;2 Essential functions of SRF and MRTF in Mouse Brain Development;43
1.7.2.1;2.1 Embryonic Neuronal Migration;43
1.7.2.2;2.2 Axonal Outgrowth, Guidance, and Synaptic Targeting;44
1.7.3;3 Functional Actin-SRF Interplay in the Mature Brain;45
1.7.3.1;3.1 Activity-Induced Gene Expression;45
1.7.3.2;3.2 Learning and Memory;45
1.7.4;4 Linking SRF to Neurodegenerative Diseases, Psychiatric Disorders, and Addiction;46
1.7.4.1;4.1 SRF Protects Against Axonal De-myelination and Degeneration;46
1.7.4.2;4.2 SRF and Epileptic Seizure-Induced Neuronal IEG Expression;47
1.7.4.3;4.3 SRF in M. Alzheimer;47
1.7.4.4;4.4 SRF as a Novel Player in Addictive Behavior and Hyperactive Disorder;48
1.7.5;References;49
1.8;The E3 Ubiquitin Ligase Ube3A Regulates Synaptic Function Through the Ubiquitination of Arc;53
1.8.1;1 A Role for Ube3A in Human Disorders of Cognitive Function;54
1.8.2;2 Ube3a is a Neuronal Activity-Regulated Gene;56
1.8.3;3 Regulation of Synaptic AMPA Receptor Function by Ube3A;57
1.8.4;4 A Novel Proteomic Approach to Ube3A Substrate Identification;60
1.8.5;5 Arc is a Neuronal Ube3A Substrate that Mediates the Effect of Ube3A on AMPAR Trafficking;62
1.8.6;6 Discussion;64
1.8.7;References;66
1.9;Targeting Children´s Brain Tumors: Development of Hedgehog Pathway Inhibitors for Medulloblastoma;69
1.9.1;1 Introduction;69
1.9.2;2 Role of the Hh Pathway in Medulloblastoma;71
1.9.3;3 Targeting Smoothened;72
1.9.4;4 Hh Pathway is Downregulated in Tumor Cell Lines;73
1.9.5;5 Direct Allografts Retain Hh Pathway Activity;74
1.9.6;6 Testing Targeted Therapies in Mice;75
1.9.7;7 HhAntag Eradicates Large Tumors in PtchI+/-p53-/- Mice;75
1.9.8;8 Hh Pathway Inhibition Causes Bone Defects in Young Mice;77
1.9.9;9 Inhibiting the Hh Pathway in the Clinic;79
1.9.10;References;80
1.10;Primary Cilia as Switches in Brain Development and Cancer;84
1.10.1;1 Introduction;84
1.10.2;2 Ciliogenesis;85
1.10.3;3 Primary cilia and Hh signaling;86
1.10.4;4 Primary Cilia in the Specification of Neural Progenitors;88
1.10.5;5 Primary Cilia and Tumorigenesis;89
1.10.6;6 Conclusion;90
1.10.7;References;91
1.11;Nervous System Aging, Degeneration, and the p53 Family;94
1.11.1;1 Introduction;94
1.11.2;2 The p53 Family Regulates Neuronal Survival and Longevity;96
1.11.3;3 p73 Regulates Neurodegeneration;97
1.11.4;4 The p53 Family Regulates Aging in Part by Regulating Adult Stem Cell Pools;99
1.11.5;5 The p53 Family and Neural Precursor Cells;100
1.11.6;6 A Model for the p53 Family and Neurodegeneration;101
1.11.7;References;102
1.12;p53, a Molecular Bridge Between Alzheimer´s Disease Pathology and Cancers?;105
1.12.1;1 Introduction;105
1.12.2;2 p53 and Members of the gamma-Secretase Complex: an Intimate Functional Cross-Talk;106
1.12.3;3 Cancer and AD: Is There a Molecular Link?;108
1.12.4;References;109
1.13;RNA regulation in Neurodegeneration and Cancer;112
1.13.1;1 Neurologic Disease and Cancer: The Paraneoplastic Neurologic Degenerations;112
1.13.2;2 RNA Binding Proteins in Neurologic Disease and Cancer;114
1.13.3;3 Back to the Basics: RBP Functional Studies;114
1.13.4;4 Genetic Systems and RBP Function;115
1.13.5;5 Bioinformatics, Genetics and Biochemistry: Beginnings of a Holistic Approach to RBP Function;115
1.13.6;6 HITS-CLIP and the Development of a Comprehensive Approach to RBP Function;116
1.13.7;References;118
1.14;Bridging Environment and DNA: Activity-Induced Epigenetic Modification in the Adult Brain;121
1.14.1;1 Introduction;121
1.14.2;2 DNA Methylation in the Brain;123
1.14.3;3 Active Modification of DNA Methylation in Neurons;124
1.14.4;4 Gadd45b Links Neuronal Activity to DNA Demethylation;125
1.14.5;5 Neuronal Activity Modifies the DNA Methylation Landscape;127
1.14.6;6 Future Perspectives;128
1.14.7;References;129
1.15;Intrinsic Brain Signaling Pathways: Targets of Neuron Degeneration;132
1.15.1;1 Introduction;133
1.15.2;2 Phosphorylation in SCA1: An Intrinsic Pathway that Drives Pathogenesis;133
1.15.3;3 Phosphorylation in Some Other Polyglutamine Neurodegenerative Diseases;136
1.15.4;4 Perspective;136
1.15.5;References;137
1.16;The miRNA System: Bifurcation Points of Cancer and Neurodegeneration;139
1.16.1;1 Introduction;139
1.16.2;2 miRNAs and Cancer;141
1.16.3;3 A Specialized Role for miRNAs at the Synapse;142
1.16.4;4 Which mRNAs are Regulated by miRNAs at the Synapse?;144
1.16.5;5 Function of miRNA Regulation of Translation at Synapses;145
1.16.6;References;146
1.17;Molecular Mechanisms for the Initiation and Maintenance of Long-Term Memory Storage;149
1.17.1;1 Memory Has Both A Short-term and A Long-Term Component;150
1.17.2;2 Initiation: Transcription, Transport and Local Translation;151
1.17.3;3 Initiation: Synapse-Specific Induction of Long-Term Memory;154
1.17.4;4 Persistence of Memory Storage Requires Local Cytoplasmic Polyadenylation;156
1.17.5;5 A Prion-Like Mechanism of CPEB Regulates Cytoplasmic Polyadenylation;157
1.17.6;6 ApCPEB Represents a New Class of Functional Prions;160
1.17.7;7 Conclusions;161
1.17.8;References;162
1.18;Index;167