Buch, Englisch, 838 Seiten, Format (B × H): 210 mm x 280 mm, Gewicht: 1580 g
Buch, Englisch, 838 Seiten, Format (B × H): 210 mm x 280 mm, Gewicht: 1580 g
ISBN: 978-0-367-65809-0
Verlag: Taylor & Francis Ltd
Around the World, metal pollution is a major problem. Conventional practices of toxic metal removal can be ineffective and/or expensive, delaying and exacerbating the crisis. Those communities dealing with contamination must be aware of the fundamentals advances of microbe-mediated metal removal practices because these methods can be easily used and require less remedial intervention. This book describes innovations and efficient applications for metal bioremediation for environments polluted by metal contaminates.
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Pharmakologie, Toxikologie
- Geowissenschaften Umweltwissenschaften Umweltwissenschaften
- Naturwissenschaften Biowissenschaften Biowissenschaften Evolutionsbiologie
- Sozialwissenschaften Psychologie Allgemeine Psychologie Biologische Psychologie, Neuropsychologie
- Technische Wissenschaften Umwelttechnik | Umwelttechnologie Umwelttechnik
- Naturwissenschaften Biowissenschaften Mikrobiologie
Weitere Infos & Material
Introduction to metal contamination and Environmental Issues. Metals and their toxic effects: An introduction to the noxious elements. Sources of metal pollution, global status and conventional remediation practices. Microbes: The natural scavengers and their role in metal bioremediation. Havocs of toxic metal contaminations: unforgettable stories. Metal-microbe interactions. Evolution of inherent biochemical pathways in microorganisms in metal contaminated environments. Enzyme catalysed microbial transformations of metals. Cellular and genetic machineries of metal resistance in microbes (the role of plasmids, genomic DNA, transposons and other genetic elements). Biosorption of metals by microorganism: bacteria, fungi, algae, actinobacteria. Metal binding proteins and peptides and their role in bioremediation. Bacterial exopolysaccharides in metal removal. Molecular approaches in metal bioremediation. Genetic engineering for enhanced metal remediation by microbes. Novel metabolic pathways for toxic metal removal from the contaminated environment. Introduction of heterologous microbial Metallothioneins into transgenic plants for metal removal. Genetically modified biosorbents for toxic metal removal. GMOs in natural environment and strategies to increase their survivability and stability. Bacterial biofilm and genetic regulation in metal detoxification. Interdisciplinary approaches for enhanced metal bioremediation. Interaction between metals, microbes and plants. Immobilization techniques for bioremediation of metals. Bioreactor based approaches of toxic metal removal. Computer aided studies in metal bioremediation. Bacterial mediated nanoparticle synthesis and their role in bioremediation. Specific metal bioremediation Studies. Investigation on arsenic accumulating and transforming bacteria for potential use in bioremediation. Elucidation of cadmium resistance gene in Cadmium resistant bacteria for utilization in bioremediation. Bioremediation of copper present in waste water using copper resistant microorganisms. Bioremediation of mercury and importance of bacterial mer genes: A biotechnology approach. Suitability of nickel resistant microbes for the use in enhanced nickel bioremediation. Efficacy of microbial entities with lead resistant genotype for in-situ bioremediation of lead contaminated sites. Zinc biosorption and subsequent mineralization/transformation by the microbial species for bioremediation of zinc. Bioremediation of chromium solutions and chromium containing waste waters. Harnessing radiation inducible promoter and gene clusters of microorganisms for enhanced precipitation of radioactive waste. Assessment of diversity and bioremediation potential of mercury resistant marine bacteria in Bay of Bengal, Odisha, India.