Medienkombination, Englisch, 442 Seiten, eBook, Format (B × H): 155 mm x 235 mm
Transform Your Business Systems into an Analytical Powerhouse
Medienkombination, Englisch, 442 Seiten, eBook, Format (B × H): 155 mm x 235 mm
ISBN: 978-1-4842-2362-8
Verlag: Apress
You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes.
Data Science Automation Using Oracle Data Miner and Oracle R Enterprise starts with an introduction to business analytics, covering why automation is necessary and the level of complexity in automation at each analytic stage. Then, it focuses on how predictive analytics can be automated by using Oracle Data Miner and Oracle R Enterprise. Also, it explains when and why ODM and ORE are to be used together for automation.
The subsequent chapters detail various statistical processes used for predictive analytics such as calculating attribute importance, clustering methods, regression analysis, classification techniques, ensemble models, and neural networks. In these chapters you will also get to understand the automation processes for each of these statistical processes using ODM and ORE along with their application in a real-life business use case.
What You Will Learn
- Discover the functionality of Oracle Data Miner and Oracle R Enterprise
- Gain methods to perform in-database predictive analytics
- Use Oracle's SQL and PLSQL APIs for building analytical solutions
- Acquire knowledge of common and widely-used business statistical analysis techniques
Who This Book Is For
- IT executives planning for quick ROI from business analytics solutions
- BI architects responsible for business analytics implementations
- Oracle architects and developers aspiring to learn data science and analytics
- R users and statisticians wanting to leverage the capability of R in Oracle Database
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Datenbankprogrammierung Oracle
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
Weitere Infos & Material
Introduction
Chapter 1: Getting Started with Oracle Advanced Analytics
· Overview of Data Science and CRISP-DM Methodology
· Overview of machine learning and its application in industries
· Getting started with Oracle Advanced Analytics- Oracle Data Miner and Oracle R Enterprise
· Analytical SQL and PL/SQL functions
· Summary
Chapter 2: Installation and Hello World
· Oracle Data Miner Installation
· Sample Hello World Oracle Data Miner workflow
· Oracle Data Miner components for SQL Developer GUI
· Oracle R Enterprise Installation
· Sample Hello World program using Oracle R
· Summary
Chapter 3: Clustering Methods
· Approaches for cluster analysis
· K-means algorithm fundamentals
· K-means algorithm in Oracle Advanced Analytics
· Metrics for evaluating clustering algorithms
· Create clusters using Oracle SQL and PLSQL API's
· Create clusters using Oracle R Enterprise
· Create clusters using Oracle SQL Developer GUI
· Case Study - Customer Segmentation
· Summary
Chapter 4: Association Rules
· Introduction to association rules
· Terminologies associated with association rules
· Apriori algorithm fundamentals
· Identify interesting rules
· Association rules using Oracle SQL and PLSQL API's
· Association rules using Oracle R Enterprise
· Association rules using Oracle SQL Developer GUI
· Case Study - Market Basket Analysis
· Summary
Chapter 5: Regression Analysis
· Understanding Relationships
· Introduction to Regression Analysis
· OLS Regression fundamentals
· OLS Regression using Oracle Advanced Analytics
· GLM and Ridge Regression Overview
· GLM Regression using Oracle SQL and PLSQL API's
· GLM Regression using Oracle R Enterprise
· GLM Regression using Oracle SQL Developer GUI
· Case Study - Sales Forecast
· Summary
Chapter 6: Classification Techniques
· Overview of classification techniques
· Logistics Regression fundamentals
· Decision Tree fundamentals
· SVM fundamentals
· Naïve Bayes fundamentals
· Classification using Oracle Advanced Analytics
· Classification using Oracle SQL and PLSQL API's
· Classification using Oracle R Enterprise
· Classification using Oracle SQL Developer GUI
· Case Study - Customer Churn Prediction
· Summary
Chapter 7: Advanced Topics
· Overview of Neural Networks
· Neural Network using Oracle Advanced Analytics
· Overview of Anomaly detection
· Anomaly detection using Oracle Advanced Analytics
· Overview of Random Forest
· Random Forest using Oracle Advanced Analytics
· Chapter 8: Solution Deployment
· Oracle Data Miner Import and Export functionality
· Introduction to PMML
· Generating PMML from Oracle Advanced Analytics models