E-Book, Englisch, 760 Seiten, Web PDF
de Boer / Blitterswijk / Thomsen Tissue Engineering
1. Auflage 2008
ISBN: 978-0-08-055919-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 760 Seiten, Web PDF
ISBN: 978-0-08-055919-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Tissue Engineering is a comprehensive introduction to the engineering and biological aspects of this critical subject. With contributions from internationally renowned authors, it provides a broad perspective on tissue engineering for students and professionals who are developing their knowledge of this important topic. Key topics covered include stem cells; morphogenesis and cellular signaling; the extracellular matrix; biocompatibility; scaffold design and fabrication; controlled release strategies; bioreactors; tissue engineering of skin, cartilage, bone and organ systems; and ethical issues.
• Covers all the essentials from tissue homeostasis and biocompatibility to cardiovascular engineering and regulations
• 22 chapters from internationally recognized authors, provide a comprehensive introduction for engineers and life scientists, including biomedical engineers, chemical and process engineers, materials scientists, biologists and medical students
• Full colour throughout, with clear development of understanding through frequent examples, experimental approaches and the latest research and developments.
Jan de Boer is a professor of Applied Cell Biology at the Laboratory of Cell Biology-Inspired Tissue Engineering, University of Maastricht, The Netherlands, where his team performs innovative research on molecular and cellular engineering of bone tissue. The research program is characterized by a holistic approach to both discovery and application, aiming at combining high throughput technologies, computational modeling and experimental cell biology to streamline the wealth of biological knowledge to real clinical applications. He is chair of the Netherlands Society of Biomaterials and Tissue Engineering, and co-founder of the biotech company Materiomics B.V.
Autoren/Hrsg.
Weitere Infos & Material
1;Front cover;1
2;Tissue engineering;4
3;Copyright page;5
4;Contents;6
5;List of contributors;8
6;Foreword;12
7;Tissue engineering – an introduction;14
8;Chapter 1 Stem cells;38
8.1;Chapter objectives;38
8.2;1.1 What defines a stem cell?;39
8.3;1.2 Embryonic stem cells;46
8.4;1.3 Adult stem cells;54
8.5;1.4 Future perspective;60
8.6;1.5 Snapshot summary;61
8.7;References;61
9;Chapter 2 Morphogenesis, generation of tissue in the embryo;64
9.1;Chapter objectives;64
9.2;2.1 Introduction;65
9.3;2.2 Cardiac development;71
9.4;2.3 Blood vessel development;75
9.5;2.4 Development of the peripheral nerve tissue;79
9.6;2.5 Embryonic skin development;84
9.7;2.6 Skeletal formation;92
9.8;2.7 Future developments;101
9.9;2.8 Summary;102
9.10;References;103
10;Chapter 3 Tissue homeostasis;110
10.1;Chapter objectives;110
10.2;3.1 Introduction;111
10.3;3.2 Tissues with no potential of regeneration;113
10.4;3.3 Tissues with slow regeneration time;113
10.5;3.4 Tissues with a high capacity of regeneration;114
10.6;3.5 Tissues where regeneration was not considered – the paradigm shift in tissue regeneration;116
10.7;3.6 Consequence of regeneration potential for the tissue engineering concept;118
10.8;3.7 Cell migration of TA cells;122
10.9;3.8 Future developments;123
10.10;3.9 Summary;123
10.11;References;123
11;Chapter 4 Cellular signaling;126
11.1;Chapter objectives;126
11.2;4.1 General introduction;127
11.3;4.2 Cellular signaling in skin biology;131
11.4;4.3 Cellular signaling in vascular biology;136
11.5;4.4 Cellular signaling in bone biology;141
11.6;4.5 Cellular signaling in cartilage biology;145
11.7;4.6 Future developments: Understanding and implementing principles of cellular signaling in tissue engineering;152
11.8;4.7 Summary;155
11.9;References;155
12;Chapter 5 The extracellular matrix as a biologic scaffold for tissue engineering;158
12.1;Chapter objectives;158
12.2;5.1 Introduction;159
12.3;5.2 Extracellular matrix;160
12.4;5.3 Preparation of ECM;168
12.5;5.4 Biologic activities of ECM scaffolds;170
12.6;5.5 Commercially available scaffolds composed of extracellular matrix;174
12.7;5.6 Future considerations;174
12.8;5.7 Summary;177
12.9;References;177
13;Chapter 6 Natural polymers in tissue engineering applications;182
13.1;Chapter objectives;182
13.2;6.1 Introduction;183
13.3;6.2 Natural polymers;183
13.4;6.3 Polysaccharides;186
13.5;6.4 Proteins;204
13.6;6.5 Polyhydroxyalkanoates;215
13.7;6.6 Future developments;217
13.8;6.7 Summary;217
13.9;References;217
14;Chapter 7 Degradable polymers for tissue engineering;230
14.1;Chapter objectives;230
14.2;7.1 Introduction and background;231
14.3;7.2 Synthesis and properties of polymers;232
14.4;7.3 (Bio)degradable polymers;238
14.5;7.4 Mechanisms of polymer degradation and erosion;241
14.6;7.5 Future perspectives;254
14.7;7.6 Summary;254
14.8;References;254
15;Chapter 8 Degradation of bioceramics;260
15.1;Chapter objectives;260
15.2;8.1 Introduction;261
15.3;8.2 Degradation mechanisms of calcium phosphate ceramics;264
15.4;8.3 Degradation mechanisms of bioactive glasses;271
15.5;8.4. Translation to bone tissue engineering systems;278
15.6;8.5 Future developments: tailoring the resorption kinetic of bioceramics for optimal bone regeneration;283
15.7;8.6 Summary;286
15.8;References;286
16;Chapter 9 Biocompatibility;292
16.1;Chapter objectives;292
16.2;9.1 Introduction;293
16.3;9.2 The evolution of current concepts of biocompatibility;293
16.4;9.3 The agents of biocompatibility;294
16.5;9.4 Tissue engineering scaffolds and matrices;301
16.6;9.5 General discussion of biocompatibility in tissue engineering;311
16.7;9.6 Future perspectives;313
16.8;9.7 Summary;313
16.9;References;314
17;Chapter 10 Cell source;316
17.1;Chapter objectives;316
17.2;10.1 Evidence for the presence of stem cells in adult tissues;317
17.3;10.2 Hemopoietic stem cell niche(s);319
17.4;10.3 Epithelial stem cell and their niches;321
17.5;10.4 Neuronal stem cell and their niches;325
17.6;10.5 Mesenchymal stem cells and their niches;326
17.7;10.6 Adult stem cells can cross lineage-specific boundaries;332
17.8;10.7 Expansion of the stem cell compartment through cell culture;333
17.9;10.8 Can we use allogeneic or xenogeneic stem cells?;335
17.10;10.9 Nuclear transfer and generation of 'self' embryonic stem cells;339
17.11;10.10 Conclusions and perspectives;339
17.12;10.11 Summary;340
17.13;References;341
18;Chapter 11 Cell culture: harvest, selection, expansion, and differentiation;344
18.1;Chapter objectives;364
18.2;11.1 Introduction;345
18.3;11.2 Harvest;346
18.4;11.3 Selection;350
18.5;11.4 Expansion;352
18.6;11.5 Differentiation;355
18.7;11.6 Future developments;359
18.8;11.7 Summary;359
18.9;References;360
19;Chapter 12 Cell nutrition;364
19.1;Chapter objectives;364
19.2;12.1 Introduction;365
19.3;12.2 Cell culture media;366
19.4;12.3 Directing cellular behavior by culture medium composition;370
19.5;12.4 Mass transport;374
19.6;12.5 Nutrient gradients in tissue engineering;378
19.7;12.6 Strategies to improve nutrient supply;380
19.8;12.7 Future development: experimental modeling of nutritional problems in tissue engineering;392
19.9;Acknowledgments;396
19.10;References;396
20;Chapter 13 Cryobiology;400
20.1;Chapter objectives;400
20.2;Abstract;401
20.3;13.1 Introduction to fundamentals of cryobiology;401
20.4;13.2 Technology based on the freezing concept;406
20.5;13.3 Vitrification technology;408
20.6;13.4 Safety issues in cryopreservation;419
20.7;13.5 Cryopreservation: practical aspects;422
20.8;13.6 Future considerations;434
20.9;13.7 Summary;434
20.10;References;435
21;Chapter 14 Scaffold design and fabrication;440
21.1;Chapter objectives;440
21.2;14.1 Introduction;441
21.3;14.2 Scaffold design;442
21.4;14.3 Scaffold fabrication;451
21.5;14.4 Textile technologies;463
21.6;14.5 Solid free-form fabrication;470
21.7;14.6 Conclusions;485
21.8;References;486
22;Chapter 15 Controlled release strategies in tissue engineering;492
22.1;Chapter objectives;492
22.2;15.1 Introduction;493
22.3;15.2 Bioactive factors admixed with matrices;499
22.4;15.3 Bioactive factors entrapped within gel matrices;502
22.5;15.4 Bioactive factors entrapped within hydrophobic scaffolds or microparticles;506
22.6;15.5 Bioactive factors bound to affinity sites within matrices;511
22.7;15.6 Bioactive factors covalently bound to matrices;512
22.8;15.7 Summary;515
22.9;References;516
23;Chapter 16 Bioreactors for tissue engineering;520
23.1;Chapter objectives;520
23.2;16.1 Introduction;521
23.3;16.2 Key functions of bioreactors in tissue engineering;521
23.4;16.3 Bioreactor design and development;529
23.5;16.4 Bioreactors as 3D in vitro model systems;532
23.6;16.5 Bioreactors in clinical applications;538
23.7;16.6 Future perspectives for bioreactors in tissue engineering;540
23.8;16.7 Summary;541
23.9;References;542
24;Chapter 17 Tissue engineering for skin transplantation;544
24.1;Chapter objectives;544
24.2;17.1 Introduction;545
24.3;17.2 Structure of the epidermis;545
24.4;17.3 Keratins;547
24.5;17.4 Structure of the dermo-epidermal junction;547
24.6;17.5 In vitro keratinocyte culture;549
24.7;17.6 Decreasing immunogenicity within cultured keratinocytes;552
24.8;17.7 Development of in vivo grafting;552
24.9;17.8 Failure of keratinocyte 'take';553
24.10;17.9 Enhanced dermal grafting;554
24.11;17.10 The future of tissue-engineered skin;562
24.12;17.11 Summary;563
24.13;References;563
25;Chapter 18 Tissue engineering of cartilage;570
25.1;Chapter objectives;570
25.2;18.1 Introduction;571
25.3;18.2 Composition of adult hyaline human articular cartilage;572
25.4;18.3 Cartilage components;573
25.5;18.4 Pathophysiology of cartilage lesion development;577
25.6;18.5 Artificial induction of cartilage repair;578
25.7;18.6 What type of chondrogeneic cells are ideal for cartilage engineering?;582
25.8;18.7 Scaffolds in cartilage tissue engineering;584
25.9;18.8 Bioreactors in cartilage tissue engineering;589
25.10;18.9 Growth factors that stimulate chondrogenesis;591
25.11;18.10 Future developments;592
25.12;18.11 Summary;592
25.13;References;593
26;Chapter 19 Tissue engineering of bone;596
26.1;Chapter objectives;596
26.2;19.1 Introduction: bone;597
26.3;19.2 Strategies for bone tissue engineering;604
26.4;19.3 Steps in bone tissue engineering research – from idea to patient;618
26.5;19.4 Current status of bone tissue engineering;632
26.6;19.5 Summary;636
26.7;References;638
27;Chapter 20 Tissue engineering of the nervous system;648
27.1;Chapter objectives;648
27.2;20.1 Introduction;649
27.3;20.2 Peripheral nerve;649
27.4;20.3 CNS: spinal cord;659
27.5;20.4 CNS: optic nerve injury model;672
27.6;20.5 CNS: retina;673
27.7;20.6 CNS: brain;677
27.8;20.7 Animal models;678
27.9;20.8 Future approaches;679
27.10;20.9 Summary;680
27.11;References;681
28;Chapter 21 Tissue engineering of organ systems;686
28.1;Chapter objectives;686
28.2;21.1 Introduction;687
28.3;21.2 Urogenital tissue engineering;687
28.4;21.3 Liver tissue engineering;698
28.5;21.4 Lung tissue engineering;704
28.6;21.5 Gut tissue engineering;707
28.7;21.6 Pancreas tissue engineering;711
28.8;21.7 Future developments;715
28.9;21.8 Summary;716
28.10;References;716
29;Chapter 22 Ethical issues in tissue engineering;722
29.1;Chapter objectives;722
29.2;22.1 Introduction;723
29.3;22.2 Morality, ethics and values;725
29.4;22.3 Moral problems relating to the source of material for tissue engineering;727
29.5;22.4 Further moral considerations;738
29.6;22.5 Some questions for the future;739
29.7;Notes;739
29.8;References;740
30;Multiple Choice Questions;742
31;Index;764
31.1;A;764
31.2;B;764
31.3;C;766
31.4;D;768
31.5;E;768
31.6;F;769
31.7;G;769
31.8;H;770
31.9;I;770
31.10;K;771
31.11;L;771
31.12;M;771
31.13;N;771
31.14;O;772
31.15;P;772
31.16;R;774
31.17;S;774
31.18;T;775
31.19;U;776
31.20;V;776
31.21;W;777
31.22;X;777
31.23;Z;777