de With | Phases of Matter and their Transitions | Buch | 978-3-527-35031-5 | sack.de

Buch, Englisch, 704 Seiten, Format (B × H): 172 mm x 247 mm, Gewicht: 1496 g

de With

Phases of Matter and their Transitions

Concepts and Principles for Chemists, Physicists, Engineers, and Materials Scientists
1. Auflage 2023
ISBN: 978-3-527-35031-5
Verlag: Wiley-VCH GmbH

Concepts and Principles for Chemists, Physicists, Engineers, and Materials Scientists

Buch, Englisch, 704 Seiten, Format (B × H): 172 mm x 247 mm, Gewicht: 1496 g

ISBN: 978-3-527-35031-5
Verlag: Wiley-VCH GmbH


Eine umfassende Einführung in die chemische Physik von Festkörpern, Flüssigkeiten und Gasen mit Schwerpunkt auf den thermodynamischen und strukturellen Aspekten von Phasen und Phasenübergängen, wobei auch Flüssigkristalle, Ferroelektronik und Oberflächenphänomene betrachtet werden.

de With Phases of Matter and their Transitions jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface xvi

List of Frequently Used Symbols and Abbreviations xxi

SI Units, Physical Constants, and Conversion Factors xxvii

Summary of Notation xxxi

1 Introduction 1

1.1 Constituents of Matter 1

1.2 Matter and Energy: Interaction and Change 3

1.3 Mass and Charge 4

1.4 Macroscopic and Microscopic Approaches 6

1.5 Gases, Liquids, and Solids 7

1.6 What to Expect? 11

1.7 Units and Notation 12

References 13

Further Reading 14

2 Classical Mechanics 15

2.1 Frames, Particles, and Coordinates 15

2.2 From Newton to Hamilton 17

2.3 Hamilton’s Principle and Lagrange’s Equations 19

2.4 Conservation Laws 21

2.5 Hamilton’s Equations 24

2.6 Hamilton’s Principle for Continuous Systems 26

2.7 The Virial Theorem 27

2.8 Final Remarks 28

References 28

Further Reading 29

3 Quantum Mechanics 30

3.1 Quantum Concepts 30

3.1.1 Fundamental Quantum Kinematics 30

3.1.2 Operators and their Representation 33

3.1.3 Fundamental Quantum Kinetics 35

3.2 Interpretation and Some Exact Solutions 37

3.2.1 The Particle in a Box 39

3.2.2 The Harmonic Oscillator 40

3.2.3 The Rigid Rotator 41

3.2.4 Many Particles 42

3.3 Approximate Quantum Mechanics Solutions 43

3.3.1 The Born–Oppenheimer Approximation 43

3.3.2 The Variation Principle 44

3.3.3 The Hartree–Fock Method 47

3.3.4 Perturbation Theory 51

3.3.5 The Density Operator 53

3.4 Final Remarks 55

References 55

Further Reading 56

4 Intermolecular Interactions 57

4.1 The Semi-classical Approach 57

4.1.1 Electrostatic Interaction 59

4.1.2 Induction Interaction 62

4.1.3 Dispersion Interaction 63

4.1.4 The Total Interaction 64

4.2 The Quantum Approach 66

4.3 Model Interactions 69

4.4 Refinements 72

4.4.1 Hydrogen Bonding 72

4.4.2 Three-Body Interactions 74

4.4.3 Accurate Empirical Potentials 74

4.5 Final Remarks 75

References 76

Further Reading 77

5 Continuum Mechanics 78

5.1 The Nature of the Continuum 78

5.2 Kinematics 79

5.2.1 Material and Spatial Coordinates 79

5.2.2 General Deformations 80

5.2.3 The Small Displacement Gradient Approximation 81

5.3 Balance Equations 83

5.4 Kinetics 85

5.4.1 The Principle of Virtual Power 86

5.4.2 Linear Momentum 86

5.4.3 Angular Momentum 88

5.4.4 Cauchy’s Equations of Motion 88

5.5 The Stress Tensor 89

5.6 Mechanical Energy 90

5.7 Final Remarks 91

References 92

Further Reading 92

6 Macroscopic Thermodynamics 93

6.1 Classical Thermodynamics 93

6.1.1 The Four Laws 93

6.1.2 Quasi-Conservative and Dissipative Forces 99

6.1.3 Equations of State 100

6.1.4 Mechanical and Thermal Equilibrium 101

6.1.5 Auxiliary Functions 101

6.1.6 Some Derivatives and their Relationships 103

6.1.7 Chemical Content 103

6.1.8 Chemical Equilibrium 106

6.2 The Local State and Internal Variables 110

6.2.1 The Behavior of Internal Variables 111

6.2.2 The Local State 113

6.3 Field Formulation 115

6.3.1 The First Law 115

6.3.2 The Second Law 116

6.4 The Linear Approximation in Non-equilibrium Thermodynamics 118

6.5 Final Remarks 122

References 122

Further Reading 123

7 Microscopic Thermodynamics 125

7.1 Basics of Statistical Thermodynamics 125

7.1.1 Preliminaries 125

7.1.2 Entropy and Partition Functions 128

7.1.3 Fluctuations 132

7.2 Noninteracting Particles 134

7.2.1 Single Particle 134

7.2.2 Many Particles 134

7.2.3 Pressure and Energy 135

7.3 The Semi-classical Approximation 136

7.4 Interacting Particles 141

7.5 Internal Contributions 142

7.5.1 Vibrations 142

7.5.2 Rotations 145

7.5.3 Electronic Transitions 147

7.6 Some General Aspects 148

7.6.1 Mode or Average? 148

7.6.2 Fluctuations and Other Ensembles 149

7.6.3 Equipartition of Energy 150

7.6.4 The Gibbs–Bogoliubov Inequality 151

References 152

Further Reading 154

8 Gases 155

8.1 Basic Kinetic Theory of Gases 155

8.2 The Virial Expansion 159

8.2.1 Some Further Remarks 162

8.3 Equations of State 164

8.4 The Principle of Corresponding States 168

8.4.1 The Extended Principle 171

8.5 Transition State Theory 174

8.5.1 Chemical Kinetics Basics 174

8.5.2 The Equilibrium Constant 175

8.5.3 Potential Energy Surfaces 176

8.5.4 The Activated Complex 177

8.5.5 The Link to Experiment 179

8.6 Dielectric Behavior 180

8.6.1 Basic Aspects 180

8.6.2 The Debye–Langevin Equation 182

8.6.3 Frequency Dependence 185

8.6.4 Estimating µ and a 190

References 193

Further Reading 196

9 Liquids 197

9.1 Approaches to Liquids 197

9.2 Distribution Functions, Structure, and Energetics 198

9.2.1 Structure 200

9.2.2 Energetics 203

9.3 The Integral Equation Approach 206

9.3.1 The Ornstein–Zernike Equation 206

9.3.2 The Yvon–Born–Green Equation 209

9.3.3 Other Integral Equations 210

9.3.4 The Potential of Mean Force 212

9.4 Comparison: Hard-Sphere and Lennard-Jones Results 214

9.5 Scaled-Particle Theory 217

9.6 Structural Models 218

9.6.1 Cell Models 220

9.6.2 Hole Models 226

9.6.3 Some Other Implementations of Hole Theory 231

9.7 The Generalized van der Waals Model 237

9.8 Phonon Theory of Liquids 240

9.9 The Quantum Cluster Equilibrium Model 244

9.10 Some Continuum Aspects 245

9.11 Dielectric Behavior 249

References 255

Further Reading 259

10 Solids 260

10.1 Inorganics and Metals 260

10.2 Polymers 263

10.3 Lattice Concepts 265

10.4 Crystalline Structures 267

10.5 Bonding: The Quantum-mechanical Approach 270

10.5.1 The Nearly Free Electron Approximation 270

10.5.2 The Tight Binding Approximation 275

10.5.3 Density Functional Theory 278

10.6 Bonding: The Empirical Approach 282

10.6.1 Atoms, Ions, and Electronegativity 282

10.6.2 Covalent and Molecular Crystals 286

10.6.3 Ionic Crystals: The Classical Approach 287

10.6.4 Ionic Crystals: Electronegativity Approaches 290

10.6.5 Metallic Crystals 294

10.7 Lattice Dynamics 296

10.8 Two Simple Models 299

10.9 Properties 300

10.9.1 Heat Capacity 300

10.9.2 Thermal Expansivity 302

10.9.3 Bulk Modulus 303

10.10 Defects 304

10.10.1 Zero-dimensional Defects 305

10.10.2 One-dimensional Defects 308

10.10.3 Other Defects 310

10.11 Thermo-elasticity 312

10.11.1 Elastic Behavior 312

10.11.2 Stress States and the Associated Elastic Constants 313

10.11.3 Elastic Energy 314

10.11.4 A Matter of Notation 315

10.11.5 Anisotropic Materials 316

10.11.6 The Effect of Temperature 319

10.12 Final Remarks 320

References 320

Further Reading 325

11 Interfaces 326

11.1 Thermodynamics of Interfaces 326

11.2 One-Component Surfaces: Semiempirical Considerations 331

11.3 One-Component Surfaces: Theoretical Considerations 336

11.3.1 Density Functional Theory 336

11.3.2 Capillary Wave Theory 341

11.4 Solid Surface Structure 343

11.4.1 Surface Roughening 345

11.5 Adsorption at Interfaces 349

11.5.1 Solutions 349

11.5.2 Thermodynamics of Adsorption 355

11.5.3 Statistics of Adsorption 357

11.5.4 Adsorption Isotherms 360

11.6 Final Remarks 366

References 366

Further R


Gijsbertus de With is Professor of Materials Science at Eindhoven University of Technology (The Netherlands). After graduating from Utrecht University and receiving his PhD at Twente University, he joined Philips Research Laboratories in Eindhoven in 1977. In 1985 he was appointed part-time professor to become in 1995 full professor at Eindhoven. His research interests include structure and interfacial phenomena related to the chemical and thermomechanical behavior of multi-phase materials, resulting in about 350 (co)-authored papers and about 15 patents. Throughout he cooperated with other researchers from academia and industry, co-founded and co-organized the annual conference Coating Science International during 2004-2014 and published three books.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.