Buch, Englisch, 704 Seiten, Format (B × H): 172 mm x 247 mm, Gewicht: 1496 g
Concepts and Principles for Chemists, Physicists, Engineers, and Materials Scientists
Buch, Englisch, 704 Seiten, Format (B × H): 172 mm x 247 mm, Gewicht: 1496 g
ISBN: 978-3-527-35031-5
Verlag: Wiley-VCH GmbH
Eine umfassende Einführung in die chemische Physik von Festkörpern, Flüssigkeiten und Gasen mit Schwerpunkt auf den thermodynamischen und strukturellen Aspekten von Phasen und Phasenübergängen, wobei auch Flüssigkristalle, Ferroelektronik und Oberflächenphänomene betrachtet werden.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Preface xvi
List of Frequently Used Symbols and Abbreviations xxi
SI Units, Physical Constants, and Conversion Factors xxvii
Summary of Notation xxxi
1 Introduction 1
1.1 Constituents of Matter 1
1.2 Matter and Energy: Interaction and Change 3
1.3 Mass and Charge 4
1.4 Macroscopic and Microscopic Approaches 6
1.5 Gases, Liquids, and Solids 7
1.6 What to Expect? 11
1.7 Units and Notation 12
References 13
Further Reading 14
2 Classical Mechanics 15
2.1 Frames, Particles, and Coordinates 15
2.2 From Newton to Hamilton 17
2.3 Hamilton’s Principle and Lagrange’s Equations 19
2.4 Conservation Laws 21
2.5 Hamilton’s Equations 24
2.6 Hamilton’s Principle for Continuous Systems 26
2.7 The Virial Theorem 27
2.8 Final Remarks 28
References 28
Further Reading 29
3 Quantum Mechanics 30
3.1 Quantum Concepts 30
3.1.1 Fundamental Quantum Kinematics 30
3.1.2 Operators and their Representation 33
3.1.3 Fundamental Quantum Kinetics 35
3.2 Interpretation and Some Exact Solutions 37
3.2.1 The Particle in a Box 39
3.2.2 The Harmonic Oscillator 40
3.2.3 The Rigid Rotator 41
3.2.4 Many Particles 42
3.3 Approximate Quantum Mechanics Solutions 43
3.3.1 The Born–Oppenheimer Approximation 43
3.3.2 The Variation Principle 44
3.3.3 The Hartree–Fock Method 47
3.3.4 Perturbation Theory 51
3.3.5 The Density Operator 53
3.4 Final Remarks 55
References 55
Further Reading 56
4 Intermolecular Interactions 57
4.1 The Semi-classical Approach 57
4.1.1 Electrostatic Interaction 59
4.1.2 Induction Interaction 62
4.1.3 Dispersion Interaction 63
4.1.4 The Total Interaction 64
4.2 The Quantum Approach 66
4.3 Model Interactions 69
4.4 Refinements 72
4.4.1 Hydrogen Bonding 72
4.4.2 Three-Body Interactions 74
4.4.3 Accurate Empirical Potentials 74
4.5 Final Remarks 75
References 76
Further Reading 77
5 Continuum Mechanics 78
5.1 The Nature of the Continuum 78
5.2 Kinematics 79
5.2.1 Material and Spatial Coordinates 79
5.2.2 General Deformations 80
5.2.3 The Small Displacement Gradient Approximation 81
5.3 Balance Equations 83
5.4 Kinetics 85
5.4.1 The Principle of Virtual Power 86
5.4.2 Linear Momentum 86
5.4.3 Angular Momentum 88
5.4.4 Cauchy’s Equations of Motion 88
5.5 The Stress Tensor 89
5.6 Mechanical Energy 90
5.7 Final Remarks 91
References 92
Further Reading 92
6 Macroscopic Thermodynamics 93
6.1 Classical Thermodynamics 93
6.1.1 The Four Laws 93
6.1.2 Quasi-Conservative and Dissipative Forces 99
6.1.3 Equations of State 100
6.1.4 Mechanical and Thermal Equilibrium 101
6.1.5 Auxiliary Functions 101
6.1.6 Some Derivatives and their Relationships 103
6.1.7 Chemical Content 103
6.1.8 Chemical Equilibrium 106
6.2 The Local State and Internal Variables 110
6.2.1 The Behavior of Internal Variables 111
6.2.2 The Local State 113
6.3 Field Formulation 115
6.3.1 The First Law 115
6.3.2 The Second Law 116
6.4 The Linear Approximation in Non-equilibrium Thermodynamics 118
6.5 Final Remarks 122
References 122
Further Reading 123
7 Microscopic Thermodynamics 125
7.1 Basics of Statistical Thermodynamics 125
7.1.1 Preliminaries 125
7.1.2 Entropy and Partition Functions 128
7.1.3 Fluctuations 132
7.2 Noninteracting Particles 134
7.2.1 Single Particle 134
7.2.2 Many Particles 134
7.2.3 Pressure and Energy 135
7.3 The Semi-classical Approximation 136
7.4 Interacting Particles 141
7.5 Internal Contributions 142
7.5.1 Vibrations 142
7.5.2 Rotations 145
7.5.3 Electronic Transitions 147
7.6 Some General Aspects 148
7.6.1 Mode or Average? 148
7.6.2 Fluctuations and Other Ensembles 149
7.6.3 Equipartition of Energy 150
7.6.4 The Gibbs–Bogoliubov Inequality 151
References 152
Further Reading 154
8 Gases 155
8.1 Basic Kinetic Theory of Gases 155
8.2 The Virial Expansion 159
8.2.1 Some Further Remarks 162
8.3 Equations of State 164
8.4 The Principle of Corresponding States 168
8.4.1 The Extended Principle 171
8.5 Transition State Theory 174
8.5.1 Chemical Kinetics Basics 174
8.5.2 The Equilibrium Constant 175
8.5.3 Potential Energy Surfaces 176
8.5.4 The Activated Complex 177
8.5.5 The Link to Experiment 179
8.6 Dielectric Behavior 180
8.6.1 Basic Aspects 180
8.6.2 The Debye–Langevin Equation 182
8.6.3 Frequency Dependence 185
8.6.4 Estimating µ and a 190
References 193
Further Reading 196
9 Liquids 197
9.1 Approaches to Liquids 197
9.2 Distribution Functions, Structure, and Energetics 198
9.2.1 Structure 200
9.2.2 Energetics 203
9.3 The Integral Equation Approach 206
9.3.1 The Ornstein–Zernike Equation 206
9.3.2 The Yvon–Born–Green Equation 209
9.3.3 Other Integral Equations 210
9.3.4 The Potential of Mean Force 212
9.4 Comparison: Hard-Sphere and Lennard-Jones Results 214
9.5 Scaled-Particle Theory 217
9.6 Structural Models 218
9.6.1 Cell Models 220
9.6.2 Hole Models 226
9.6.3 Some Other Implementations of Hole Theory 231
9.7 The Generalized van der Waals Model 237
9.8 Phonon Theory of Liquids 240
9.9 The Quantum Cluster Equilibrium Model 244
9.10 Some Continuum Aspects 245
9.11 Dielectric Behavior 249
References 255
Further Reading 259
10 Solids 260
10.1 Inorganics and Metals 260
10.2 Polymers 263
10.3 Lattice Concepts 265
10.4 Crystalline Structures 267
10.5 Bonding: The Quantum-mechanical Approach 270
10.5.1 The Nearly Free Electron Approximation 270
10.5.2 The Tight Binding Approximation 275
10.5.3 Density Functional Theory 278
10.6 Bonding: The Empirical Approach 282
10.6.1 Atoms, Ions, and Electronegativity 282
10.6.2 Covalent and Molecular Crystals 286
10.6.3 Ionic Crystals: The Classical Approach 287
10.6.4 Ionic Crystals: Electronegativity Approaches 290
10.6.5 Metallic Crystals 294
10.7 Lattice Dynamics 296
10.8 Two Simple Models 299
10.9 Properties 300
10.9.1 Heat Capacity 300
10.9.2 Thermal Expansivity 302
10.9.3 Bulk Modulus 303
10.10 Defects 304
10.10.1 Zero-dimensional Defects 305
10.10.2 One-dimensional Defects 308
10.10.3 Other Defects 310
10.11 Thermo-elasticity 312
10.11.1 Elastic Behavior 312
10.11.2 Stress States and the Associated Elastic Constants 313
10.11.3 Elastic Energy 314
10.11.4 A Matter of Notation 315
10.11.5 Anisotropic Materials 316
10.11.6 The Effect of Temperature 319
10.12 Final Remarks 320
References 320
Further Reading 325
11 Interfaces 326
11.1 Thermodynamics of Interfaces 326
11.2 One-Component Surfaces: Semiempirical Considerations 331
11.3 One-Component Surfaces: Theoretical Considerations 336
11.3.1 Density Functional Theory 336
11.3.2 Capillary Wave Theory 341
11.4 Solid Surface Structure 343
11.4.1 Surface Roughening 345
11.5 Adsorption at Interfaces 349
11.5.1 Solutions 349
11.5.2 Thermodynamics of Adsorption 355
11.5.3 Statistics of Adsorption 357
11.5.4 Adsorption Isotherms 360
11.6 Final Remarks 366
References 366
Further R