Buch, Englisch, Band 42, 412 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 1710 g
Reihe: Progress in Probability
Proceedings of the Sixth Oslo--Silivri Workshop Geilo 1996
Buch, Englisch, Band 42, 412 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 1710 g
Reihe: Progress in Probability
ISBN: 978-0-8176-4018-7
Verlag: Birkhauser Boston
This volume contains the contributions of the participants of the Sixth Oslo-Silivri Workshop on Stochastic Analysis, held in Geilo from July 29 to August 6, 1996. There are two main lectures • Stochastic Differential Equations with Memory, by S.E. A. Mohammed, • Backward SDE's and Viscosity Solutions of Second Order Semilinear PDE's, by E. Pardoux. The main lectures are presented at the beginning of the volume. There is also a review paper at the third place about the stochastic calculus of variations on Lie groups. The contributing papers vary from SPDEs to Non-Kolmogorov type probabilistic models. We would like to thank • VISTA, a research cooperation between Norwegian Academy of Sciences and Letters and Den Norske Stats Oljeselskap (Statoil), • CNRS, Centre National de la Recherche Scientifique, • The Department of Mathematics of the University of Oslo, • The Ecole Nationale Superieure des Telecommunications, for their financial support. L. Decreusefond J. Gjerde B. 0ksendal A.S. Ustunel PARTICIPANTS TO THE 6TH WORKSHOP ON STOCHASTIC ANALYSIS Vestlia H¢yfjellshotell, Geilo, Norway, July 28 -August 4, 1996. E-mail: abc@gfm.cii.fc.ui.pt Aureli ALABERT Departament de Matematiques Laurent DECREUSEFOND Universitat Autonoma de Barcelona Ecole Nationale Superieure des Telecom 08193-Bellaterra munications CATALONIA (Spain) Departement Reseaux E-mail: alabert@mat.uab.es 46, rue Barrault Halvard ARNTZEN 75634 Paris Cedex 13 Dept. of Mathematics FRANCE University of Oslo E-mail: decreuse@res.enst.fr Box 1053 Blindern Laurent DENIS N-0316 Oslo C.M.I.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Stochastik Elementare Stochastik
Weitere Infos & Material
Main Lectures.- 1 Stochastic Differential Systems With Memory. Theory, Examples and Applications.- 2 Backward Stochastic Differential Equations and Viscosity Solutions of Systems of Semilinear Parabolic and Elliptic PDEs of Second Order.- Contributed Papers.- 3 Stochastic Analysis on Lie Groups.- 4 A Conditional Independence Property for the Solution of a Linear Stochastic Differential Equation with Lateral Conditions.- 5 Numerical Solution of the Pressure Equation for Fluid Flow in a Stochastic Medium.- 6 The Burgers Equation with a Non-Gaussian Random Force.- 7 A Verification Theorem for Combined Stochastic Control and Impulse Control.- 8 Energy Identities and Estimates for Anticipative Stochastic Integrals on a Riemannian Manifold.- 9 On Conditional Characteristic Functions of Second Order Wiener Functionals.- 10 A Variation of Parameters Solution of a Quasilinear Skohorod SDE using the Wick Product.- 11 Diagonal Estimates of Transition Densities for Jump Processes in Small Time.- 12 Non-Kolmogorov Probabilistic Models with p-adic Probabilities and Foundations of Quantum Mechanics.- 13 Smoothness of the Solution Operator of Stochastic Differential Equations with Infinite Dimensional Parameters.- 14 Nonlinear SPDEs: Colombeau Solutions and Pathwise Limits.- 15 Construction of a Quantum Field Linked to the Coulomb Potential.- 16 The Sard Inequality on Two Non-Gaussian Spaces.- 17 Regularity of the Law for a Class of Anticipating Stochastic Differential Equations.- 18 Fubini’s Theorem for Plane Stochastic Integrals.- 19 Stability and Vanishing Viscosity for a Class of SPDEs Related to Turbulent Transport.- 20 Probabilistic Interpretation of the Symmetry Group of Heat Equations.- 21 On the Strong Feller Property of the Semi-Groups Generated by Non-Divergence Operatorswith LP Drift.