Buch, Englisch, 404 Seiten, Format (B × H): 155 mm x 234 mm, Gewicht: 794 g
Concepts and Applications for Microsystems
Buch, Englisch, 404 Seiten, Format (B × H): 155 mm x 234 mm, Gewicht: 794 g
ISBN: 978-1-84821-239-8
Verlag: Wiley
This book contains four parts. The first one is dedicated to concepts. It starts with the definitions and examples of what is piezo-pyro and ferroelectricity by considering the symmetry of the material. Thereafter, these properties are described within the framework of Thermodynamics. The second part described the way to integrate these materials in Microsystems. The third part is dedicated to characterization: composition, structure and a special focused on electrical behaviors. The last part gives a survey of state of the art applications using integrated piezo or/and ferroelectric films.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Angewandte Physik
- Naturwissenschaften Physik Thermodynamik Oberflächen- und Grenzflächenphysik, Dünne Schichten
- Technische Wissenschaften Technik Allgemein Physik, Chemie für Ingenieure
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Elektronik, Optik
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Metallische Werkstoffe
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Metallurgie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Technische Thermodynamik
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Technologie der Oberflächenbeschichtung
Weitere Infos & Material
Preface xiii
Emmanuel DEFAŸ
General Introduction xvii
Chapter 1. Dielectricity, Piezoelectricity, Pyroelectricity and Ferroelectricity 1
Emmanuel DEFAŸ
1.1. Crystal structure 1
1.2. Piezoelectricity, pyroelectricity and ferroelectricity definitions 9
1.3. Simplified examples 10
1.4. Three typical structures: wurtzite, ilmenite and perovskite 16
1.5. Bibliography 23
Chapter 2. Thermodynamic Study: a Structural Approach 25
Emmanuel DEFAŸ
2.1. History 25
2.2. Revisiting statistical thermodynamics 26
2.3. State functions 41
2.4. Linear equations -?npiezoelectricity 44
2.5. Non linear equations -?nelectrostriction 47
2.6. Bibliography 48
Chapter 3. Ferroelectric-paraelectric Phase Transition Thermodynamic Modeling 49
Emmanuel DEFAŸ
3.1. Hypothesis on Gibbs’ elastic energy 49
3.2. Second-order transition 52
3.3. Effects of stresses 58
3.4. First-order transition 60
3.5. Conclusion 65
3.6. Bibliography 65
Chapter 4. Mechanical Formalism 67
Emmanuel DEFAŸ
4.1. Introduction 67
4.2. Hooke’s law 67
4.3. Definitions of local strains 69
4.4. Definition of local strains 77
4.5. Stress-strain relation 83
4.6. Elastic energy density 86
4.7. Expression of the elasticity tensor as a function of elements of symmetry 89
4.8. Bibliography 93
Chapter 5. Dielectric Formalism 95
Emmanuel DEFAŸ
5.1. Introduction 95
5.2. The dielectric effect seen by Faraday 95
5.3. Electric polarization and displacement 99
5.4. The dielectric constant 104
5.5. The local field in dielectrics: polarization catastrophe 105
5.6. Dielectric relaxation 109
5.7. Electric energy density 115
5.8. Bibliography 117
Chapter 6. Piezoelectric Formalism 119
Emmanuel DEFAŸ and Mathieu PIJOLAT
6.1. Thermodynamic equations 119
6.2. Reducing coefficients using crystal symmetry 121
6.3. One-dimensional microscopic model 126
6.4. Electromechanical coupling coefficient 130
6.5. Piezoelectric coefficients of key materials 134
6.6. Calculating coupling as a function of crystal orientation 136
6.7. Piezoelectric coefficients in the case of ferroelectric materials 138
6.8. Relation between piezoelectric formalism and matter 139
6.9. Bibliography 141
Chapter 7. Acoustic Formalism 143
Alexandre REINHARDT
7.1. Propagation of bulk waves 143
7.2. Bulk wave resonator 163
7.3. Bulk acoustic waves filter 185
7.4. Bibliography 190
Chapter 8. Electrostrictive Formalism 191
Emmanuel DEFAŸ
8.1. Foundations of electrostriction 191
8.2. Thermodynamic model of electrostriction – case of the resonator 192
8.3. The electrostriction tensor 195
8.4. Microscopic model of electrostriction 197
8.5. Electrostrictive resonator 202
8.6. Bibliography 206
Chapter 9. Electric Characterization 207
Emmanuel DEFAŸ, Gwenaël LE RHUN and Emilien BOUYSSOU
9.1. Static piezoelectric characterization of thin films 207
9.2. Piezoelectric and atomic force microscopy 215
9.3. Ferroelectric measurement 225
9.4. Dielectric measurement 232
9.5. Leakage current in metal/insulator/metal structures 236
9.6. Bibliography 245
Chapter 10. Piezoelectric Resonators and Filters 249
Alexandre REINHARDT and Christophe BILLARD
10.1. Acoustic resonators: principle and history 249
10.2. BAW technology 269
10.3. CRF technology 283
10.4. Bibliography 291
Chapter 11. High Overtone Bulk Acoustic Resonator (HBAR) 297
Mathieu PIJOLAT, Chrystel DEGUET and Sylvain BALLANDRAS
11.1. About HBAR 297
11.2. Technology 302
11.3. Examples of implementations 305
11.4. Conclusions about HBAR 312
11.5. Bibliography 313
Chapter 12. Electrostrictive Resonators 315
Alexandre VOLATIER, Brice IVIRA, Christophe ZINCK, Nizar BEN HASSINE and Emmanuel DEFAŸ
12.1. Introduction 315
12.2. State of the art 316
12.3. Experimental implementations 326
12.4. Simulation of a filter with electrostrictive resonators 341
12.5. Status of perovskite electrostrictive resonators 342
12.6. PZT-based tunable frequency ferroelectric acoustic resonator 344
12.7. Nonlinear effect in piezoelectric AlN 348
12.8. Conclusion with electrostriction 354
12.9. Bibliography 355
Chapter 13. Thin Film Piezoelectric Transducers 357
Matthieu CUEFF, Patrice REY, Fabien FILHOL and Emmanuel DEFAŸ
13.1. Introduction 357
13.2. State of the art 358
13.3. Resonant membranes 361
13.4. Resonant micromirror 366
13.5. Piezoelectric micro-switch 371
13.6. Sign of piezoelectric coefficients 391
13.7. Bibliography 394
List of Authors 397
Index 399