Deng / Tian / Zhang | Support Vector Machines | Buch | 978-1-4398-5792-2 | sack.de

Buch, Englisch, 364 Seiten, Format (B × H): 155 mm x 239 mm, Gewicht: 635 g

Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series

Deng / Tian / Zhang

Support Vector Machines

Optimization Based Theory, Algorithms, and Extensions
1. Auflage 2012
ISBN: 978-1-4398-5792-2
Verlag: CRC Press

Optimization Based Theory, Algorithms, and Extensions

Buch, Englisch, 364 Seiten, Format (B × H): 155 mm x 239 mm, Gewicht: 635 g

Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series

ISBN: 978-1-4398-5792-2
Verlag: CRC Press


Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)—classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.

The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twin SVMs for binary classification problems, SVMs for solving multi-classification problems based on ordinal regression, SVMs for semi-supervised problems, and SVMs for problems with perturbations.

To improve readability, concepts, methods, and results are introduced graphically and with clear explanations. For important concepts and algorithms, such as the Crammer-Singer SVM for multi-class classification problems, the text provides geometric interpretations that are not depicted in current literature.

Enabling a sound understanding of SVMs, this book gives beginners as well as more experienced researchers and engineers the tools to solve real-world problems using SVMs.

Deng / Tian / Zhang Support Vector Machines jetzt bestellen!

Zielgruppe


Researchers in machine learning, data mining, and operations research.

Weitere Infos & Material


Optimization. Linear Classification Machines. Linear Regression Machines. Kernels and Support Vector Machines. Basic Statistical Learning Theory of C-Support Vector Classification. Model Construction. Implementation. Variants and Extensions of Support Vector Machines. Bibliography. Index.


Naiyang Deng, Yingjie Tian, Chunhua Zhang



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.