Buch, Englisch, 376 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 675 g
Reihe: Studies in Universal Logic
Buch, Englisch, 376 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 675 g
Reihe: Studies in Universal Logic
ISBN: 978-3-7643-8707-5
Verlag: Springer
A model theory that is independent of any concrete logical system allows a general handling of a large variety of logics. This generality can be achieved by applying the theory of institutions that provides a precise mathematical formulation for the intuitive concept of a logical system. Especially in computer science, where the development of a huge number of specification logics is observable, institution-independent model theory simplifies and sometimes even enables a concise model-theoretic analysis of the system. Besides incorporating important methods and concepts from conventional model theory, the proposed top-down methodology allows for a structurally clean understanding of model-theoretic phenomena. As a consequence, results from conventional concrete model theory can be understood more easily, and sometimes even new results are obtained.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Geisteswissenschaften Philosophie Philosophische Logik, Argumentationstheorie
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
Weitere Infos & Material
Categories.- Institutions.- Theories and Models.- Internal Logic.- Model Ultraproducts.- Saturated Models.- Preservation and Axiomatizability.- Interpolation.- Definability.- Possible Worlds.- Grothendieck Institutions.- Institutions with Proofs.- Specification.- Logic Programming.