Doshita / Nishida / Furukawa | Algorithmic Learning Theory - ALT '92 | Buch | 978-3-540-57369-2 | sack.de

Buch, Englisch, Band 743, 264 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g

Reihe: Lecture Notes in Computer Science

Doshita / Nishida / Furukawa

Algorithmic Learning Theory - ALT '92

Third Workshop, ALT '92, Tokyo, Japan, October 20-22, 1992. Proceedings
1993
ISBN: 978-3-540-57369-2
Verlag: Springer Berlin Heidelberg

Third Workshop, ALT '92, Tokyo, Japan, October 20-22, 1992. Proceedings

Buch, Englisch, Band 743, 264 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-57369-2
Verlag: Springer Berlin Heidelberg


This volume contains the papers that were presented at the
Third Workshop onAlgorithmic Learning Theory, held in Tokyo
in October 1992. In addition to 3invited papers, the volume
contains 19 papers accepted for presentation, selected from
29 submitted extended abstracts. The ALT workshops have been
held annually since 1990 and are organized and sponsored by
the Japanese Society for Artificial Intelligence. The main
objective of these workshops is to provide an open forum for
discussions and exchanges of ideasbetween researchers from
various backgrounds in this emerging, interdisciplinary
field of learning theory. The volume is organized into parts
on learning via query, neural networks, inductive inference,
analogical reasoning, and approximate learning.

Doshita / Nishida / Furukawa Algorithmic Learning Theory - ALT '92 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Discovery learning in intelligent tutoring systems.- From inductive inference to algorithmic learning theory.- A stochastic approach to genetic information processing.- On learning systolic languages.- A note on the query complexity of learning DFA.- Polynomial-time MAT learning of multilinear logic programs.- Iterative weighted least squares algorithms for neural networks classifiers.- Domains of attraction in autoassociative memory networks for character pattern recognition.- Regularization learning of neural networks for generalization.- Competitive learning by entropy minimization.- Inductive inference with bounded mind changes.- Efficient inductive inference of primitive Prologs from positive data.- Monotonic language learning.- Prudence in vacillatory language identification (Extended abstract).- Implementation of heuristic problem solving process including analogical reasoning.- Planning with abstraction based on partial predicate mappings.- Learning k-term monotone Boolean formulae.- Some improved sample complexity bounds in the probabilistic PAC learning model.- An application of Bernstein polynomials in PAC model.- On PAC learnability of functional dependencies.- Protein secondary structure prediction based on stochastic-rule learning.- Notes on the PAC learning of geometric concepts with additional information.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.