Buch, Englisch, 195 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Reihe: Modern Birkhäuser Classics
Buch, Englisch, 195 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Reihe: Modern Birkhäuser Classics
ISBN: 978-0-8176-4768-1
Verlag: Birkhäuser Boston
This volume offers insights into the development of mathematical logic over the last century. Arising from a special session of the history of logic at an American Mathematical Society meeting, the chapters explore technical innovations, the philosophical consequences of work during the period, and the historical and social context in which the logicians worked.
The discussions herein will appeal to mathematical logicians and historians of mathematics, as well as philosophers and historians of science.
“…this is an important book. It exposes the richness of ideas and viewpoints, the difficult and not always direct pathways taken in the development of mathematical logic in the last century, and the various factors which did and continue to affect that development.”
Modern Logic
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
- Geisteswissenschaften Geschichtswissenschaft Geschichtliche Themen Wissenschafts- und Universitätsgeschichte
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
- Geisteswissenschaften Philosophie Philosophische Logik, Argumentationstheorie
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
Weitere Infos & Material
The Problem of Elimination in the Algebra of Logic.- Peirce and the Law of Distribution.- The First Russell Paradox.- Principia Mathematica and the Development of Automated Theorem Proving.- Oswald Veblen and the Origins of Mathematical Logic at Princeton.- The Löwenheim-Skolem Theorem, Theories of Quantification, and Proof Theory.- The Reception of Gödel’s Incompleteness Theorems.- Gödel’s and Some Other Examples of Problem Transmutation.- The Development of Self-Reference: Löb’s Theorem.- The Unintended Interpretations of Intuitionistic Logic.- The Writing of Introduction to Metamathematics.- In Memoriam: Haskell Brooks Curry.- The Work of J. Richard Büchi.