Dubey / Kumar / García-Díaz | Artificial Intelligence for Renewable Energy systems | Buch | 978-0-323-90396-7 | sack.de

Buch, Englisch, 406 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 1000 g

Dubey / Kumar / García-Díaz

Artificial Intelligence for Renewable Energy systems


Erscheinungsjahr 2022
ISBN: 978-0-323-90396-7
Verlag: William Andrew Publishing

Buch, Englisch, 406 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 1000 g

ISBN: 978-0-323-90396-7
Verlag: William Andrew Publishing


Artificial Intelligence for Renewable Energy Systems addresses the energy industries remarkable move from traditional power generation to a cost-effective renewable energy system, and most importantly, the paradigm shift from a market-based cost of the commodity to market-based technological advancements. Featuring recent developments and state-of-the-art applications of artificial intelligence in renewable energy systems design, the book emphasizes how AI supports effective prediction for energy generation, electric grid related line loss prediction, load forecasting, and for predicting equipment failure prevention.

Looking at approaches in system modeling and performance prediction of renewable energy systems, this volume covers power generation systems, building service systems and combustion processes, exploring advances in machine learning, artificial neural networks, fuzzy logic, genetic algorithms and hybrid mechanisms.

Dubey / Kumar / García-Díaz Artificial Intelligence for Renewable Energy systems jetzt bestellen!

Weitere Infos & Material


1. Current State of energy systems
2. Artificial Intelligence and Machine Learning implications to energy systems
3. Weather forecasting using Artificial Intelligence
4. Intelligent Energy storage
5. Modelling and Simulation of Power Electronic Circuits
6. Control methods in Renewable energy systems
7. Role of Artificial Intelligence in Power Quality Management and Stability Analysis

8. Integration of microgrids
9. Rooftop photovoltaic systems

10. Biomass and biogas

11. Renewable energy systems and technologies education
12. Evolutionary Intelligence in Renewable energy
13. Smart Energetic Management

14. RnE: Renewable Energetic Systems
15. Energy efficient lighting systems
16. Scope of Artificial Intelligence based solar energy system
17. Role of Artificial Intelligence in environmental sustainability
18. Integration of Artificial Intelligence with biomethanation
19. Hybrid renewable energy system and Artificial Intelligence
20. Renewable energy and sustainable developments


García-Díaz, Vicente
Dr. Vicente García-Díaz is a Software Engineer and has a PhD in Computer Science. He is an Associate Professor in the Department of Computer Science at the University of Oviedo. He is also part of the editorial and advisory board of several journals and has been editor of several special issues in books and journals. He has supervised 80+ academic projects and published 80+ research papers in journals, conferences and books. His research interests include decision support systems, Domain-Specific languages and eLearning.

Kumar, Abhishek
Dr. Abhishek Kumar is a professor and post-doctorate fellow in computer science at Ingenium Research Group, based at Universidad De Castilla-La Mancha in Spain. He has been teaching in academia for more than 8 years, and published more than 50 articles in reputed, peer reviewed national and international journals, books, and conferences. His research area includes artificial intelligence, image processing, computer vision, data mining, and machine learning.

Dubey, Ashutosh Kumar
Ashutosh Kumar Dubey is an Associate Professor in the Department of Computer Science and Engineering at Chitkara University, Himachal Pradesh, India. He is also a Postdoctoral Fellow of the Ingenium Research Group Lab, Universidad
de Castilla-La Mancha, Ciudad Real, Spain.

Srivastav, Arun Lal
Dr. Arun Lal Srivastav is an Associate Professor in the Department of Applied Sciences at Chitkara University, Himachal Pradesh, India.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.