Dufresne Nanocellulose
1. Auflage 2012
ISBN: 978-3-11-025460-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
From Nature to High Performance Tailored Materials
E-Book, Englisch, 475 Seiten
ISBN: 978-3-11-025460-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Researchers in the life sciences and bio-based applications, biological, chemical and agricultural engineering, organic chemistry and materials science.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Chemie Organische Chemie
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Technologie der Papierverarbeitung und Zellstoffverarbeitung
- Technische Wissenschaften Technik Allgemein Nanotechnologie
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Technologie der Kunststoffe und Polymere
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Polymerwerkstoffe
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Biomaterialien, Nanomaterialien, Kohlenstoff
Weitere Infos & Material
1;Preface;7
2;1 Cellulose and potential reinforcement;17
2.1;1.1 Polysaccharides;17
2.2;1.2 Chemical structure of the cellulose macromolecul;19
2.3;1.3 Biosynthesis of cellulose;21
2.4;1.4 Polymorphism of cellulose;24
2.4.1;1.4.1 Cellulose I;24
2.4.2;1.4.2 Cellulose II;26
2.4.3;1.4.3 Cellulose III;26
2.4.4;1.4.4 Cellulose IV;27
2.5;1.5 Cellulose microfibrils;27
2.6;1.6 Hierarchical structure of plants and natural fibers;31
2.7;1.7 Potential reinforcement of cellulose;35
2.7.1;1.7.1 Mechanical properties of natural fibers;36
2.7.2;1.7.2 Mechanical properties of cellulose microfibrils;39
2.7.3;1.7.3 Mechanical properties of cellulose crystal;41
2.8;1.8 Cellulose-based materials;47
2.8.1;1.8.1 Thermoplastically processable cellulose derivatives;48
2.8.2;1.8.2 Cellulose fiber reinforced composites;49
2.9;1.9 Conclusions;50
2.10;1.10 References;51
3;2 Preparation of microfibrillated cellulose;59
3.1;2.1 Fiber fibrillation process;59
3.1.1;2.1.1 Purification of cellulose;60
3.1.2;2.1.2 High-pressure homogenization;61
3.1.3;2.1.3 Grinding;63
3.1.4;2.1.4 Cryocrushing;65
3.1.5;2.1.5 High-intensity ultrasonication;66
3.1.6;2.1.6 Electrospinning;67
3.2;2.2 Pretreatments;69
3.2.1;2.2.1 Enzymatic pretreatment;70
3.2.2;2.2.2 Carboxymethylation;72
3.2.3;2.2.3 TEMPO-mediated oxidation pretreatment;73
3.3;2.3 Morphology;74
3.4;2.4 Degree of fibrillation;78
3.4.1;2.4.1 Turbidity of the suspension;78
3.4.2;2.4.2 Viscosity of the suspension;78
3.4.3;2.4.3 Porosity and density;78
3.4.4;2.4.4 Mechanical properties;81
3.4.5;2.4.5 Water retention;81
3.4.6;2.4.6 Degree of polymerization;81
3.4.7;2.4.7 Specific surface area;82
3.4.8;2.4.8 Crystallinity;84
3.5;2.5 Mechanical properties of MFC films;85
3.6;2.6 Optical properties of MFC films;88
3.7;2.7 Functionalization of MFC films;90
3.8;2.8 Conclusions;90
3.9;2.9 References;91
4;3 Preparation of cellulose nanocrystals;99
4.1;3.1 Pioneering works on the acid hydrolysis of cellulose;99
4.2;3.2 Pretreatment of natural fibers;101
4.3;3.3 Acid hydrolysis treatment;102
4.3.1;3.3.1 Sources of cellulose;103
4.3.2;3.3.2 Nature of the acid;106
4.3.3;3.3.3 Effect and optimization of extraction conditions;108
4.4;3.4 Other processes;112
4.4.1;3.4.1 Enzymatic hydrolysis treatment;112
4.4.2;3.4.2 TEMPO oxidation;113
4.4.3;3.4.3 Hydrolysis with gaseous acid;114
4.4.4;3.4.4 Ionic liquid;115
4.5;3.5 Post-treatment of hydrolyzed cellulose;115
4.5.1;3.5.1 Purification of the suspension;115
4.5.2;3.5.2 Fractionation;115
4.5.3;3.5.3 Yield;117
4.6;3.6 Morphology;118
4.7;3.7 Degree of hydrolysis;124
4.7.1;3.7.1 Birefringence of the suspension;124
4.7.2;3.7.2 Viscosity of the suspension;126
4.7.3;3.7.3 Porosity and density;126
4.7.4;3.7.4 Mechanical properties;126
4.7.5;3.7.5 Degree of polymerization;127
4.7.6;3.7.6 Specific surface area;128
4.7.7;3.7.7 Level of sulfation;129
4.7.8;3.7.8 Crystallinity;130
4.8;3.8 Mechanical properties of nanocrystal films;132
4.9;3.9 Conclusions;134
4.10;3.10 References;134
5;4 Bacterial cellulose;141
5.1;4.1 Production of cellulose by bacteria;141
5.2;4.2 Influence of carbon source;145
5.3;4.3 Culture conditions;146
5.4;4.4 In situ modification of bacterial cellulose;149
5.5;4.5 Bacterial cellulose hydrogels;150
5.6;4.6 Bacterial cellulose films;152
5.7;4.7 Applications of bacterial cellulose;156
5.8;4.8 Conclusions;157
5.9;4.9 References;158
6;5 Chemical modification of nanocellulose;163
6.1;5.1 Reactivity of cellulose;163
6.2;5.2 Surface chemistry of cellulose nanoparticles;166
6.3;5.3 Non-covalent surface chemical modification of cellulose nanoparticles;168
6.3.1;5.3.1 Adsorption of surfactant;168
6.3.2;5.3.2 Adsorption of macromolecules;169
6.4;5.4 Esterification, acetylation and acylation;170
6.5;5.5 Cationization;174
6.6;5.6 Silylation;175
6.7;5.7 Carbamination;177
6.8;5.8 TEMPO-mediated oxidation;178
6.9;5.9 Polymer grafting;180
6.9.1;5.9.1 Polymer grafting using the “grafting onto” approach;183
6.9.2;5.9.2 Polymer grafting using the “grafting from” approach;185
6.10;5.10 Click chemistry;190
6.11;5.11 Fluorescently labeled nanocellulose;190
6.12;5.12 Evidence of surface chemical modification;193
6.12.1;5.12.1 X-ray diffraction analysis;193
6.12.2;5.12.2 Dispersion in organic solvent;193
6.12.3;5.12.3 Contact angle measurements;194
6.12.4;5.12.4 Gravimetry;196
6.12.5;5.12.5 Fourier transform infrared (FTIR) spectroscopy;196
6.12.6;5.12.6 Elemental analysis;197
6.12.7;5.12.7 X-ray photoelectron spectroscopy (XPS);197
6.12.8;5.12.8 Time of flight mass spectrometry (TOF-MS);199
6.12.9;5.12.9 Solid-state NMR spectroscopy;199
6.12.10;5.12.10 Thermogravimetric analysis (TGA);200
6.12.11;5.12.11 Differential scanning calorimetry (DSC);200
6.13;5.13 Conclusions;200
6.14;5.14 References;202
7;6 Rheological behavior of nanocellulose suspensions and self-assembly;209
7.1;6.1 Rheological behavior of microfibrillated cellulose suspensions;209
7.2;6.2 Stability of colloidal cellulose nanocrystal suspensions;212
7.3;6.3 Birefringence properties of cellulose nanocrystal suspensions;215
7.4;6.4 Liquid crystalline behavior;216
7.4.1;6.4.1 Liquid crystalline state;216
7.4.2;6.4.2 Liquid crystalline behavior of cellulose derivatives;219
7.4.3;6.4.3 Liquid crystalline behavior of cellulose nanocrystal suspensions;221
7.5;6.5 Onsager theory for neutral rod-like particles;223
7.6;6.6 Theoretical treatment for charged rod-like particles;227
7.7;6.7 Chiral nematic behavior of cellulose nanocrystal suspensions;228
7.7.1;6.7.1 Isotropic-chiral nematic phase separation of cellulose nanocrystal suspensions;228
7.7.2;6.7.2 Effect of the polyelectrolyte nature;230
7.7.3;6.7.3 Effect of the presence of macromolecules;234
7.8;6.8 Liquid crystalline phases of spherical cellulose nanocrystal suspensions;236
7.9;6.9 Rheological behavior of cellulose nanocrystal suspensions;237
7.10;6.10 Light scattering studies;240
7.11;6.11 Preserving the chiral nematic order in solid films;242
7.12;6.12 Conclusions;245
7.13;6.13 References;245
8;7 Processing of nanocellulose-based materials;251
8.1;7.1 Polymer latexes;251
8.2;7.2 Hydrosoluble or hydrodispersible polymers;254
8.3;7.3 Non-aqueous systems;258
8.3.1;7.3.1 Non-aqueous polar medium;259
8.3.2;7.3.2 Solvent mixture and solvent exchange;260
8.3.3;7.3.3 In situ polymerization;262
8.3.4;7.3.4 Surfactant;263
8.3.5;7.3.5 Surface chemical modification;264
8.4;7.4 Foams and aerogels;264
8.5;7.5 Melt compounding;268
8.5.1;7.5.1 Drying of the nanoparticles;268
8.5.2;7.5.2 Melt compounding with a polar matrix;270
8.5.3;7.5.3 Melt compounding using solvent exchange;272
8.5.4;7.5.4 Melt compounding with processing aids;272
8.5.5;7.5.5 Melt compounding with chemically grafted nanoparticles;274
8.5.6;7.5.6 Melt compounding using physical process;276
8.6;7.6 Filtration and impregnation;276
8.7;7.7 Spinning and electrospinning;277
8.8;7.8 Multilayer films;278
8.9;7.9 Conclusions;281
8.10;7.10 References;281
9;8 Thermal properties;293
9.1;8.1 Thermal expansion of cellulose;293
9.1.1;8.1.1 Thermal expansion coefficient of cellulose crystal;293
9.1.2;8.1.2 Thermal expansion coefficient of nanocellulose films;295
9.1.3;8.1.3 Thermal expansion coefficient of nanocellulose-based composites;295
9.2;8.2 Thermal conductivity of nanocellulose-based nanocomposites;297
9.3;8.3 Thermal transitions of cellulose nanoparticles;297
9.4;8.4 Thermal stability of cellulose nanoparticles;299
9.4.1;8.4.1 Thermal degradation of cellulose;299
9.4.2;8.4.2 Thermal stability of microfibrillated cellulose;300
9.4.3;8.4.3 Thermal stability of cellulose nanocrystals;302
9.4.4;8.4.4 Thermal stability of bacterial cellulose and electrospun fibers;308
9.5;8.5 Glass transition of nanocellulose-based nanocomposites;308
9.6;8.6 Melting/crystallization of nanocellulose-based nanocomposites;314
9.6.1;8.6.1 Melting temperature;314
9.6.2;8.6.2 Crystallization temperature;316
9.6.3;8.6.3 Degree of crystallinity;318
9.6.4;8.6.4 Rate of crystallization;323
9.7;8.7 Thermal stability of nanocellulose-based nanocomposites;326
9.8;8.8 Conclusions;329
9.9;8.9 References;329
10;9 Mechanical properties of nanocellulose-based nanocomposites;337
10.1;9.1 Pioneering works;337
10.2;9.2 Modeling of the mechanical behavior;339
10.2.1;9.2.1 Mean field approach;339
10.2.2;9.2.2 Percolation approach;343
10.3;9.3 Influence of the morphology of the nanoparticles;349
10.4;9.4 Influence of the processing method;351
10.5;9.5 Filler/matrix interfacial interactions;355
10.5.1;9.5.1 Polarity of the matrix;361
10.5.2;9.5.2 Chemical modification of the nanoparticles;366
10.5.3;9.5.3 Local alteration of the matrix in the presence of the nanoparticles;369
10.6;9.6 Synergistic reinforcement;372
10.7;9.7 Specific mechanical characterization;373
10.7.1;9.7.1 Compression test;373
10.7.2;9.7.2 Successive tensile test;374
10.7.3;9.7.3 Bulge test 359;16
10.7.4;9.7.4 Raman spectroscopy;376
10.7.5;9.7.5 Atomic force microscopy;377
10.8;9.8 Conclusions;378
10.9;9.9 References;378
11;10 Swelling and barrier properties;389
11.1;10.1 Swelling and sorption properties;389
11.2;10.2 Barrier properties;393
11.2.1;10.2.1 Water vapor transfer rate and water vapor permeability;393
11.2.2;10.2.2 Gas permeability;394
11.3;10.3 Water sorption and swelling properties of microfibrillated cellulose films;396
11.3.1;10.3.1 Influence of pretreatment;398
11.3.2;10.3.2 Influence of post-treatment;398
11.4;10.4 Water vapor transfer rate and water vapor permeability of microfibrillated cellulose films;399
11.4.1;10.4.1 Influence of pretreatment;399
11.4.2;10.4.2 Influence of post-treatment;400
11.5;10.5 Gas permeability of microfibrillated cellulose films;401
11.5.1;10.5.1 Effect of relative humidity;401
11.5.2;10.5.2 Improvement of gas barrier properties;403
11.5.3;10.5.3 Polymer coating;404
11.5.4;10.5.4 Paper coating;405
11.6;10.6 Cellulose nanocrystal films;407
11.7;10.7 Microfibrillated cellulose-based films;408
11.7.1;10.7.1 Swelling and sorption properties;408
11.7.2;10.7.2 Water vapor transfer rate and water vapor permeability;411
11.7.3;10.7.3 Oxygen permeability;411
11.8;10.8 Cellulose nanocrystal-based films;412
11.8.1;10.8.1 Swelling and sorption properties;412
11.8.2;10.8.2 Water vapor transfer rate and water vapor permeability;417
11.8.3;10.8.3 Gas permeability;418
11.8.4;10.8.4 Other substances permeability;420
11.9;10.9 Conclusions;420
11.10;10.10 References;421
12;11 Other polysaccharide nanocrystals;427
12.1;11.1 Starch;427
12.1.1;11.1.1 Composition;427
12.1.2;11.1.2 Multi-scale structure of the granule;430
12.1.3;11.1.3 Polymorphism;432
12.2;11.2 Acid hydrolysis of starch;433
12.3;11.3 Starch nanocrystals;435
12.3.1;11.3.1 Aqueous suspensions;437
12.3.2;11.3.2 Morphology;438
12.3.3;11.3.3 Thermal properties;440
12.3.4;11.3.4 Surface chemical modification;440
12.4;11.4 Starch nanocrystal reinforced polymer nanocomposites;442
12.4.1;11.4.1 Mechanical properties;442
12.4.2;11.4.2 Swelling properties;445
12.4.3;11.4.3 Barrier properties;446
12.5;11.5 Chitin;446
12.5.1;11.5.1 Chemical structure;447
12.5.2;11.5.2 Polymorphism and structure;447
12.6;11.6 Chitin nanocrystals;448
12.6.1;11.6.1 Acid hydrolysis;448
12.6.2;11.6.2 Other treatments;448
12.6.3;11.6.3 Morphology;450
12.6.4;11.6.4 Surface chemical modification;451
12.7;11.7 Chitin nanocrystal reinforced polymer nanocomposites;453
12.7.1;11.7.1 Mechanical properties;453
12.7.2;11.7.2 Swelling resistance;456
12.8;11.8 Conclusions;457
12.9;11.9 References;457
13;12 Conclusions, applications and likely future trends;465
13.1;12.1 References;468
14;13 Index;471