Dupuis / Ellis | A Weak Convergence Approach to the Theory of Large Deviations | Buch | 978-0-471-07672-8 | sack.de

Buch, Englisch, 504 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 924 g

Dupuis / Ellis

A Weak Convergence Approach to the Theory of Large Deviations


1. Auflage 1997
ISBN: 978-0-471-07672-8
Verlag: Wiley

Buch, Englisch, 504 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 924 g

ISBN: 978-0-471-07672-8
Verlag: Wiley


Applies the well-developed tools of the theory of weak convergenceof probability measures to large deviation analysis--a consistentnew approach

The theory of large deviations, one of the most dynamic topics inprobability today, studies rare events in stochastic systems. Thenonlinear nature of the theory contributes both to its richness anddifficulty. This innovative text demonstrates how to employ thewell-established linear techniques of weak convergence theory toprove large deviation results. Beginning with a step-by-stepdevelopment of the approach, the book skillfully guides readersthrough models of increasing complexity covering a wide variety ofrandom variable-level and process-level problems. Representationformulas for large deviation-type expectations are a key tool andare developed systematically for discrete-time problems.

Accessible to anyone who has a knowledge of measure theory andmeasure-theoretic probability, A Weak Convergence Approach to theTheory of Large Deviations is important reading for both studentsand researchers.

Dupuis / Ellis A Weak Convergence Approach to the Theory of Large Deviations jetzt bestellen!

Weitere Infos & Material


Formulation of Large Deviation Theory in Terms of the LaplacePrinciple.

First Example: Sanov's Theorem.

Second Example: Mogulskii's Theorem.

Representation Formulas for Other Stochastic Processes.

Compactness and Limit Properties for the Random Walk Model.

Laplace Principle for the Random Walk Model with ContinuousStatistics.

Laplace Principle for the Random Walk Model with DiscontinuousStatistics.

Laplace Principle for the Empirical Measures of a MarkovChain.

Extensions of the Laplace Principle for the Empirical Measures of aMarkov Chain.

Laplace Principle for Continuous-Time Markov Processes withContinuous Statistics.

Appendices.

Bibliography.

Indexes.


PAUL DUPUIS is a professor in the Division of Applied Mathematics at Brown University in Providence, Rhode Island.

RICHARD S. ELLIS is a professor in the Department of Mathematics and Statistics at the University of Massachusetts at Amherst.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.