Buch, Englisch, 328 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 520 g
Buch, Englisch, 328 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 520 g
ISBN: 978-0-323-91785-8
Verlag: William Andrew Publishing
Zielgruppe
Researchers, professionals, and graduate students in computer science & engineering; electrical engineering
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung Social Media, Semantic Web, Web 2.0
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Big Data
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Fuzzy-Systeme
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Section 1: Introduction of Intelligent Information Filtering and Organisation Systems for Social Microblogging Sites
1. Introduction to Microblogging Sites
2. Data structures and data storage
3. Data Collection using Twitter API
Section 2: Microblogging dataset Applications and Implications
4. Brief overview of existing algorithms and Applications
Attribute Selection Methods - Filter Method, Wrapper Method, Other attribute selection algorithms
5. Spam detection - Spam detection in OSM - Attribute selection for spam detection
6. Summarization - Automatic Document Summarization, Summarization of microblogs, Comparing algorithms for microblog summarization, Summarization Validation
7. Cluster Analysis, Clustering Algorithms, Partition based Clustering, Hierarchical Clustering, Density-based Clustering, Graph clustering algorithms, Cluster Validation Indices, Clustering in Online Social Microblogging Sites
Section 3: Attribute Selection to Improve Spam Classification
8. Introduction of Attribute Selection to Improve Spam Classification
9. Attribute Selection Based in Basics of Rough Set Theory and Attribute selection algorithm.
10. Experimental Dataset Description
11. Evaluating performance and Evaluation measures
12. Fake news, scams, recruiting by terrorist or criminal organizations
Section 4: Microblog Summarization
13. Introduction of Microblog Summarization
14. Base summarization algorithms
15. Unsupervised ensemble summarization approach
16. Supervised ensemble summarisation approach
17. Experiments and results and Performance analysis
18. Demonstrating summarization examples
Section 5: Microblog Clustering
19. Introduction of Microblog Clustering
Experimental Dataset - will be posted on Mendeley and link included at end of Chapter 19
20. Graph Based Clustering Technique
21. Genetic Algorithm based Clustering
22. Clustering based on Feature Selection
23. Clustering Microblogs using Dimensionality Reduction
24. Evaluating performance and result Analysis
Section 6: Conclusion and Future Directions on Social Microblogging Sites