E-Book, Englisch, Band 415, 945 Seiten, eBook
Duy / Dao / Kim AETA 2016: Recent Advances in Electrical Engineering and Related Sciences
1. Auflage 2016
ISBN: 978-3-319-50904-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Theory and Application
E-Book, Englisch, Band 415, 945 Seiten, eBook
Reihe: Lecture Notes in Electrical Engineering
ISBN: 978-3-319-50904-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Contents;8
3;Keynote;18
4;Variable Structure System and Its Applications;19
4.1;1 Introduction;19
4.2;2 Sliding Mode Control for Linear System;20
4.2.1;2.1 Sliding Mode Design for a Linear System;20
4.2.2;2.2 Sliding Mode Control;21
4.2.3;2.3 Discrete-Time Sliding Mode Control;22
4.3;3 Direct Self-tuning Control for SISO System;26
4.4;4 Modeling and Swing-Up of Furuta Pendulum;29
4.4.1;4.1 Modeling of Furuta Pendulum by Projection;29
4.5;5 Swing up Control of Pendulum;32
4.5.1;5.1 Artificial Gravity Approach;32
4.5.2;5.2 Nonlinear Control;32
4.5.3;5.3 Nonlinear Sliding Mode Control;34
4.6;6 Conclusion;35
4.7;References;35
5;Controlling Complex Dynamical Networks;36
6;Computational Mechanics;37
7;Implement a Modified Viscoplasticity Based on Overstress Model into Numerical Simulation of the Incremental Sheet Forming Process;38
7.1;Abstract;38
7.2;1 Introduction;38
7.3;2 Modified Viscoplasticity Based on Overstress;39
7.4;3 Implementing into FEM Software;41
7.5;4 FEM Simulation and Practical Experiment;45
7.6;5 Results and Discussion;46
7.7;6 Conclusion;47
7.8;References;48
8;CFD Analysis of High Velocity P/V Valve Movement Depending on Pressure Change;49
8.1;Abstract;49
8.2;1 Introduction;49
8.3;2 High Velocity P/V Valve Movement;50
8.3.1;2.1 Governing Equation of Valve Movement;50
8.3.2;2.2 Mesh Deformation;51
8.4;3 CFD Analysis for High Velocity P/V Valve;52
8.4.1;3.1 High Velocity P/V Valve on Initial Opening (Case 1);52
8.4.2;3.2 High Velocity P/V Valve on Maximum Opening (Case 2);53
8.4.3;3.3 Valve Oscillation Depending on Pressure Change (Case 3);54
8.5;4 Conclusion;56
8.6;Acknowledgment;56
8.7;References;57
9;Finite Element Analysis on the Contact Stress of Class 600 Flange Joints;58
9.1;Abstract;58
9.2;1 Introduction;58
9.3;2 Finite Element Analysis;59
9.4;3 Results and Discussion;61
9.5;4 Conclusions;64
9.6;Acknowledgement;65
9.7;References;65
10;Computer Science;66
11;Accelerate SOMA Using Parallel Processing in GPGPU;67
11.1;Abstract;67
11.2;1 Introduction;67
11.3;2 Mathematical Problem;69
11.4;3 Optimization and Methods;70
11.4.1;3.1 Method 1: Each Individual Has One Thread;70
11.4.2;3.2 Method 2: Each Path Has One Thread with Shared Memory;71
11.5;4 Experimental Results;73
11.6;5 Conclusion;75
11.7;Acknowledgement;75
11.8;References;76
12;Comparison of Swarm and Evolutionary Based Algorithms for the Stabilization of Chaotic Oscillations;77
12.1;Abstract;77
12.2;1 Introduction;77
12.3;2 Problem Design;78
12.3.1;2.1 Chaotic System;78
12.3.2;2.2 Nonlinear Oscillations Control Method;78
12.3.3;2.3 Cost Function;80
12.4;3 Used Metaheuristic;80
12.4.1;3.1 Particle Swarm Optimizer – PSO;80
12.4.2;3.2 Differential Evolution;81
12.5;4 Simulation Results;82
12.5.1;4.1 Case Study 1;83
12.5.2;4.2 Case Study 2;84
12.6;5 Conclusion;86
12.7;Acknowledgements;86
12.8;References;86
13;Robust Optimization for Audio FingerPrint Hierarchy Searching on Massively Parallel with Multi-GPGPUs Using K-modes and LSH;88
13.1;1 Introduction;88
13.2;2 Basic Knowledge and Related Works;89
13.2.1;2.1 Localitive Sensitive Hashing;89
13.2.2;2.2 K-means and K-modes;90
13.2.3;2.3 Related Work: Fast k-Nearest Neighbor Search Using GPU;91
13.3;3 Previous Work: Hierarchy Massively Parallel Searching;91
13.3.1;3.1 Parallel Audio Fingerprint Searching using Single GPGPU;92
13.3.2;3.2 Parallel Audio Fingerprint Searching using Multiple GPGPUs;92
13.4;4 Proposed Methods: Robust Optimization for Audio FingerPrint Hierarchy Searching on Massively Parallel with Multi-GPGPUs Using K-modes and LSH;93
13.4.1;4.1 Miss Prediction Method;93
13.4.2;4.2 Miss Handling Method;94
13.5;5 Evaluation;94
13.5.1;5.1 Experiment Design;94
13.5.2;5.2 Result;95
13.5.3;5.3 Comparison Results;96
13.6;6 Conclusion and Future Work;97
13.7;References;97
14;Control System;99
15;?-Synthesis Robust Control on Tension Adjustment of Towing Rope System;100
15.1;Abstract;100
15.2;1 Introduction;100
15.3;2 Towing Rope System and Its Model;101
15.3.1;2.1 System Configuration;101
15.3.2;2.2 Data Acquiring;101
15.3.3;2.3 Developing Plant Model from Experiment Data;102
15.3.4;2.4 Uncertainty Analysis;102
15.4;3 Control Design and Experiment;104
15.4.1;3.1 Design Specification;104
15.4.2;3.2 ?-Synthesis;105
15.4.3;3.3 Order Reduction of ?-Controller;106
15.4.4;3.4 Analysis of Closed-Loop System;107
15.5;4 Experiment Results;107
15.6;5 Concluding Remarks;109
15.7;Acknowledgement;109
15.8;References;109
16;High-Bandwidth Tracking Control of Electric Hydrostatic Actuator (EHA) Using an Input Shaping Filter;110
16.1;Abstract;110
16.2;1 Introduction;110
16.3;2 Mathematical Modeling of the EHA System;111
16.3.1;2.1 Overview of the EHA;111
16.3.2;2.2 Modeling of the EHA System;113
16.4;3 Controller Design for the EHA-Driven System;114
16.4.1;3.1 Design of the PI?D Controller;115
16.4.2;3.2 Design of the Feed-Forward Controller;116
16.4.3;3.3 Design of the Input Shaping Filter;117
16.5;4 Control Performance of the EHA-Driven System;117
16.6;5 Conclusion;119
16.7;References;120
17;A Robust Simplified Backstepping Control Approach for Pump-Controlled Electro-Hydraulic Systems;121
17.1;Abstract;121
17.2;1 Introduction;121
17.3;2 System Modeling and Problem Statements;122
17.4;3 Robust Controller Design;123
17.4.1;3.1 Control Signal Selection;124
17.4.2;3.2 Stability Analysis;125
17.5;4 Experimental Validation;126
17.6;5 Conclusion;129
17.7;References;129
18;Modified Model Reference Adaptive Controller for a Nonlinear SISO System with External Disturbance and Input Constraint;131
18.1;1 Introduction;131
18.2;2 Problem Formulation;132
18.3;3 M-MRAC Controller Design;133
18.4;4 Experimental Setup and Results;136
18.5;5 Conclusion;140
18.6;References;140
19;A Model Reference Adaptive Controller for Belt Conveyors of Induction Conveyor Line in Cross-Belt Sorting System with Input Saturation;142
19.1;Abstract;142
19.2;1 Introduction;142
19.3;2 System Modelling;143
19.4;3 Model Reference Adaptive Controller Design;145
19.5;4 Experiment Results;148
19.6;5 Conclusion;151
19.7;Acknowledgments;151
19.8;References;152
20;A Combination of Direct and Indirect Types in Modified Model Reference Adaptive Controller for a SISO Uncertain System;153
20.1;1 Introduction;153
20.2;2 Combined Direct and Indirect M-MRAC Approach;154
20.2.1;2.1 Direct M-MRAC;155
20.2.2;2.2 Indirect M-MRAC;156
20.2.3;2.3 Combined Direct and Indirect M-MRAC;156
20.3;3 Experiment Setup and Results;157
20.4;4 Conclusions;160
20.5;References;161
21;Performance of a Modified-Model Reference Adaptive Controller for Belt Conveyors of Induction Conveyor Line in the Presence of Saturated Inputs and Bounded Disturbances;162
21.1;Abstract;162
21.2;1 Introduction;162
21.3;2 System Modelling;163
21.4;3 Modified-Model Reference Adaptive Controller Design;165
21.5;4 Simulation Results;168
21.6;5 Conclusion;173
21.7;Acknowledgments;173
21.8;References;173
22;Slide Mode Control Design for a Class of Uncertain Dynamic Systems;175
22.1;Abstract;175
22.2;1 Introduction;175
22.3;2 Statement of the Problem;176
22.4;3 Sliding Mode Stability Analysis;178
22.5;4 Reachability Analysis;179
22.6;5 Numerical Example;180
22.7;6 Conclusion;184
22.8;References;184
23;Energy;186
24;A Numerical Analysis on Heat Transfer Between the Air and the Liquid in a Hybrid Solar Collector;187
24.1;Abstract;187
24.2;1 Introduction;188
24.3;2 Numerical Model and Methods;189
24.3.1;2.1 Hybrid Solar Collector;189
24.3.2;2.2 Data Reduction;190
24.4;3 Results and Discussion;192
24.5;4 Conclusion;195
24.6;Acknowledgments;195
24.7;References;195
25;Performance Analysis of Brine Chiller Refrigeration Cycles;196
25.1;Abstract;196
25.2;1 Introduction;196
25.3;2 Cycle Descriptions and Analysis Conditions;198
25.3.1;2.1 Cycle Descriptions;198
25.3.2;2.2 Modeling;199
25.3.3;2.3 Analysis Conditions;199
25.4;3 Results and Discussion;200
25.4.1;3.1 Effect of Condensation and Evaporation Temperatures;200
25.4.2;3.2 Effect of Superheating and Subcooling Degrees;202
25.4.3;3.3 Effect of Intermediate Pressure;202
25.5;4 Conclusions;205
25.6;Acknowledgements;205
25.7;References;205
26;Experimental and Numerical Study on the Thermal Performances of Battery Cell and ECU for an E-Bike;207
26.1;Abstract;207
26.2;1 Introduction;207
26.3;2 Experimental Method and Numerical Analysis;209
26.3.1;2.1 Experimental Method and Apparatus;209
26.3.2;2.2 Numerical Analysis for Thermal Performance Estimation;210
26.4;3 Results and Discussion;211
26.4.1;3.1 Results and Discussion of Experiment Part;211
26.4.2;3.2 Result and Discussion of Numerical Part;212
26.5;4 Conclusion;215
26.6;Acknowledgement;216
26.7;References;216
27;Experimental Investigation of Heat Transfer Characteristics of Battery Management System and Electronic Control Unit of Neighborhood Electric Vehicle;217
27.1;Abstract;217
27.2;1 Introduction;217
27.3;2 Experimental Setup;218
27.4;3 Results and Discussion;219
27.5;4 Conclusion;222
27.6;Acknowledgement;223
27.7;References;223
28;Electric Energy Conversion of Repeated Mechanical Movement at Automatic Doors;224
28.1;Abstract;224
28.2;1 Introduction;224
28.3;2 Regenerative Energy Harvesting System;225
28.3.1;2.1 Automatic Door Operation;225
28.3.2;2.2 Motor Regenerative Harvesting System Design;227
28.3.3;2.3 Energy Harvesting Experiment of DC Motor;230
28.4;3 Conclusion;232
28.5;References;232
29;Dynamic Behavior Analysis of the Mechanical Parts for the Onshore-Type Wave Energy Converter;233
29.1;Abstract;233
29.2;1 Introduction;233
29.3;2 System Modeling;234
29.3.1;2.1 Mechanism of Wave Power Generation System;234
29.3.2;2.2 Kinematic Modeling;235
29.3.3;2.3 Wave Loads Modeling;236
29.4;3 Dynamic Simulation;238
29.4.1;3.1 Simulation Conditions;238
29.4.2;3.2 Simulation Results;239
29.5;4 Conclusion;240
29.6;Acknowledgement;240
29.7;References;241
30;An Effective Design of a Solar Thermal Collection and Storage System Using Molten Tin as Heat Transfer Fluid;242
30.1;Abstract;242
30.2;1 Introduction;242
30.3;2 Description and Computation of the Solar Thermal Collector;243
30.4;3 Describe the Process of Collection - Storage - Heating in the Solar Thermal System;243
30.4.1;3.1 The Collection Process of the Solar Thermal System;243
30.4.2;3.2 The Thermal Storage Process;243
30.4.3;3.3 The Heating Process;243
30.5;4 Calculating the Heating Process;244
30.6;5 Calculating the Melting Process of Fluid;246
30.7;6 Calculating the Heat Storage and Heat Insulation Process;247
30.8;7 Calculating the Heating Process;249
30.9;8 Calculating the Parameters of the Sample Solar Thermal System;249
30.10;9 Manufacturing Sample Thermal Collection and Storage System, Experimental Results;250
30.11;10 Conclusions;251
30.12;References;251
31;Image Processing;253
32;Detecting Pulse from Head Motions Using Smartphone Camera;254
32.1;1 Introduction;254
32.2;2 Detecting Pulse from Head Motions;255
32.2.1;2.1 Face Feature Points Detection and Tracking;256
32.2.2;2.2 Signal Refinement;256
32.2.3;2.3 Signal Selection and Heart Rate Estimation;257
32.3;3 Proposed System;257
32.4;4 Experimental Results and Discussion;257
32.5;5 Conclusion and Future Works;261
32.6;References;262
33;Preliminary Result on Underwater 3-Dimensional Reconstruction Using Imaging Sonar;263
33.1;1 Introduction;263
33.2;2 Reconstruction Using Sonar Image;264
33.2.1;2.1 3-Dimensional Transformation;264
33.2.2;2.2 Filtering the Sonar Image;264
33.2.3;2.3 Range Detection for Shape Extraction;265
33.2.4;2.4 Occupancy;266
33.3;3 Experiment;266
33.3.1;3.1 Environment;266
33.3.2;3.2 Experimental Result;267
33.4;4 Conclusion;269
33.5;References;269
34;Vision-Based Marker-Less Motion Measurement for Berthing;270
34.1;1 Introduction;270
34.2;2 Vision-Based Measurement System for Position and Heading;271
34.2.1;2.1 System Configuration;271
34.2.2;2.2 Tracking of the Designated Point;272
34.2.3;2.3 Distance and Bearing Measurement Using a Camera Unit;273
34.2.4;2.4 Motion Estimation Based on the Distances and Bearings;274
34.3;3 Performance Evaluation of the Proposed System;276
34.4;4 Conclusion;278
34.5;References;279
35;Independent Statistical Descriptor in Face Recognition;280
35.1;Abstract;280
35.2;1 Introduction;280
35.2.1;1.1 The Related Works;280
35.2.2;1.2 Motivation and Contribution;281
35.3;2 Independent Statistical Descriptor (ISD);282
35.3.1;2.1 Image-Filters Convolution;282
35.3.2;2.2 Response Binarization and Encoding;283
35.3.3;2.3 Local Histogramming and Pooling;283
35.4;3 Experimental Results and Discussions;284
35.4.1;3.1 Datasets: FERET and YMU;284
35.4.2;3.2 Implementation Summary;284
35.4.3;3.3 Independent Filter Settings;284
35.4.4;3.4 Performance Evaluation on FERET;284
35.4.5;3.5 Performance Evaluation on YMU;286
35.5;4 Concluding Remark;287
35.6;Acknowledgement;287
35.7;References;287
36;Implement a Computer Mouse Control for Quadriplegic Disability Using Camera;289
36.1;Abstract;289
36.2;1 Introduction;289
36.3;2 Methodology;290
36.3.1;2.1 System Overview;290
36.3.2;2.2 Initialization and Calibration;290
36.3.3;2.3 Facial Detection;291
36.3.4;2.4 Eye Detection;291
36.3.5;2.5 Eye Gaze Recognition;292
36.3.5.1;2.5.1 The Aperture of the Eye (Vertical Movement);292
36.3.5.2;2.5.2 The Glance Movement of the Eye (Horizontal Movement);296
36.3.6;2.6 Mouse Controller;296
36.4;3 Results;297
36.5;4 Conclusion;298
36.6;References;298
37;Measurement of the Fish Body Wound Depth Based on a Depth Map Inpainting Method;300
37.1;Abstract;300
37.2;1 Introduction;300
37.3;2 System Description and Aligning RGB Image with Depth Map;301
37.3.1;2.1 System Description;301
37.3.2;2.2 Aligning RGB Image with Depth Map;302
37.4;3 Proposed Depth Map Inpainting and Binarization;303
37.4.1;3.1 Proposed Depth Map Inpainting;303
37.4.2;3.2 Image Binarization;305
37.5;4 Calculation of the Depth Value;306
37.6;5 Experimental Results;307
37.6.1;5.1 Depth Map Inpainting;307
37.6.2;5.2 Wound Depth Test;308
37.7;6 Conclusion;310
37.8;Acknowledgments;310
37.9;References;310
38;Performance Evaluation of a Stereo-Camera-Based Markerless Distance Measurement System for Vessel Positioning;311
38.1;Abstract;311
38.2;1 Introduction;311
38.3;2 Vision-Based Marker-Less Distance Measurement System;312
38.3.1;2.1 System Configuration;312
38.3.2;2.2 Tracking of the Designated Point;312
38.3.3;2.3 Distance Measurement Using Natural Feature Points;314
38.4;3 Performance Evaluation of Our System;316
38.4.1;3.1 Accuracy Evaluation of the Proposed System;316
38.4.2;3.2 Robustness Evaluation for Illumination Change;317
38.5;4 Conclusion;319
38.6;Acknowledgment;319
38.7;References;319
39;Positional Displacement Measurement of Floating Units Based on Aerial Images for Pontoon Bridges;320
39.1;1 Introduction;320
39.2;2 Positional Displacement Measurement System;321
39.2.1;2.1 System Overview;321
39.2.2;2.2 Displacements Measurement of Floating Units;322
39.3;3 Feasibility Verification Using the Proposed System;324
39.4;4 Conclusion;325
39.5;References;326
40;Industrial Automation;327
41;Analysis of the Magnetic Characteristics in MFL Type NDT System for Inspecting Gas Pipelines;328
41.1;Abstract;328
41.2;1 Introduction;328
41.3;2 System Structure and Operating Principle;329
41.3.1;2.1 Magnetic Flux Leakage Method;329
41.3.2;2.2 System Structure for Pipeline Inspection;329
41.4;3 Magnetic Analysis Using Finite Element Method;330
41.4.1;3.1 Modeling and Numerical Analysis;330
41.4.2;3.2 Analysis of the Magnetic Force;331
41.5;4 Conclusion;333
41.6;References;333
42;A Research on Designing and Controlling of an Automatic Loading System Used Inside Containers;334
42.1;Abstract;334
42.2;1 Introduction;334
42.3;2 Mechanical Design;335
42.3.1;2.1 Design Parameters;335
42.3.2;2.2 Control Requirements;336
42.3.3;2.3 Design Model;337
42.3.4;2.4 Design Analysis;338
42.4;3 Stress Simulation;340
42.5;4 Design of the Control System;341
42.5.1;4.1 Control System;341
42.5.2;4.2 Control Algorithm;343
42.6;5 Conclusion;343
42.7;References;343
43;Introduction to K-water’s Research and Development Strategy for Advanced Water Pipe Network System Inspection, Monitoring, and Assessment Technology;344
43.1;Abstract;344
43.2;1 Introduction;344
43.3;2 Inspection and Assessment Technology Status Quo for Large Diameter Water Supply Pipelines;346
43.4;3 Strategy for Technology R&D;349
43.5;4 Anticipation of Benefits and Outcomes;351
43.6;References;352
44;Design of Hopper Position for Development of Automatic Mackerel Grader;353
44.1;Abstract;353
44.2;1 Introduction;353
44.3;2 System Modeling of Automatic Mackerel Grader;354
44.4;3 Sorting Simulation and Design the Hopper Position;356
44.5;4 Conclusion;358
44.6;Acknowledgement;358
44.7;References;359
45;Introduction of In-Line Inspection Technology in KOGAS;360
45.1;Abstract;360
45.2;1 Introduction;360
45.3;2 Development of Conventional In-Line Inspection Technology;361
45.4;3 Development of Advanced In-Line Inspection Technology;363
45.4.1;3.1 Development of CMFL Technology;363
45.4.2;3.2 Development of EMAT Technology;365
45.5;4 Development of Robotic In-Line Inspection Technology;368
45.6;5 Pipeline Simulation Facility for In-Line Inspection;370
45.6.1;5.1 Pipeline Simulation Facility for Conventional Intelligent PIG;370
45.6.2;5.2 UPSF (Un-Piggable Pipeline Simulation Facility);371
45.7;6 Conclusion;372
45.8;References;372
46;Inspection of Unpiggable Natural Gas Pipelines Using In-Pipe Robot;373
46.1;Abstract;373
46.2;1 Introduction;373
46.3;2 Overall Design of PIBOT;374
46.3.1;2.1 Design of Camera Module;374
46.3.2;2.2 Design of Drive Module;375
46.3.3;2.3 Design of Battery Module;376
46.3.4;2.4 Design of Pump Module;376
46.3.5;2.5 Design of MFL Module;377
46.3.5.1;2.5.1 Experiments in Pull-Rig Test Facility;377
46.3.5.2;2.5.2 Experiment Results;377
46.3.6;2.6 Design of RFECT Module;379
46.3.7;2.7 Integration of the PIBOT;379
46.4;3 Field Implementation;380
46.5;4 Conclusion;382
46.6;References;382
47;Materials;383
48;Improving the Angular Color Uniformity and the Lumen Output for White LED Lamps by Green Ce0.67 Tb0.33 MgAl11 O19:Ce,Tb Phosphor;384
48.1;Abstract;384
48.2;1 Introduction;384
48.3;2 Main Part;385
48.3.1;2.1 Enhancement of Emission Spectra;385
48.3.2;2.2 Scattering of Phosphor Particles;386
48.3.3;2.3 Simulation Results and Discussions;388
48.4;3 Conclusions;389
48.5;References;389
49;Optically-Regulated Current Switching Device Based on Vanadium Dioxide Thin Film Using Near-Infrared Laser Diode;391
49.1;Abstract;391
49.2;1 Introduction;391
49.3;2 Experimental Preparation;392
49.4;3 Results and Discussion;392
49.5;4 Conclusion;395
49.6;Acknowledgments;395
49.7;References;395
50;Multiple Resistance States in Vanadium-Dioxide-Based Memristive Device Using 966 nm Laser Diode;397
50.1;Abstract;397
50.2;1 Introduction;397
50.3;2 Experimental Setup;398
50.4;3 Results and Discussion;399
50.5;4 Conclusion;400
50.6;Acknowledgments;400
50.7;References;401
51;Wavelength-Switchable Erbium-Doped Fiber Ring Laser Based on Inline Switching Filter;402
51.1;Abstract;402
51.2;1 Introduction;402
51.3;2 Results and discussion;403
51.4;3 Conclusion;405
51.5;Acknowledgements;405
51.6;References;405
52;Simulation Study of Void Aggregations in Amorphous ZnO;407
52.1;Abstract;407
52.2;1 Introduction;407
52.3;2 Calculation Method;408
52.4;3 Results and Discussion;409
52.5;4 Conclusion;414
52.6;Acknowledgment;414
52.7;References;414
53;Influence of Green Phosphor Ce0.67 Tb0.33 MgAl11 O19:Ce,Tb on the Luminescent Properties and Correlated Color Temperature Deviation of Multi-chip White LEDs;416
53.1;Abstract;416
53.2;1 Introduction;416
53.3;2 Methods;417
53.4;3 Results and Discussion;417
53.5;4 Conclusions;420
53.6;References;420
54;Mechanical Engineering;421
55;Analysis of Intermediate Die Profile in Multistage Shape Drawing Process Based on Two-Dimensional Electric Field Analysis: Results for Trapezoidal-Shaped Wire;422
55.1;Abstract;422
55.2;1 Introduction;422
55.3;2 Intermediate Dies Design Method;424
55.3.1;2.1 Electric Field Analysis;424
55.3.2;2.2 Design of Intermediate Die Profiles Using EFA;424
55.4;3 Validation of the Advanced EFA Design Method;428
55.4.1;3.1 3D-FE Modeling for Shape Drawing Process;428
55.4.2;3.2 Results and Discussion of FE Analysis;428
55.5;4 Experiments with Multistage Shape Drawing;430
55.6;5 Conclusions;431
55.7;Acknowledgement;431
55.8;References;431
56;Similarity-Based Damage Detection Method: Numerical Study;433
56.1;Abstract;433
56.2;1 Introduction;433
56.3;2 Cosine Similarity Based Damage Detection Method;434
56.3.1;2.1 Change Ratios of Natural Frequencies;434
56.3.2;2.2 Warning Index;434
56.3.3;2.3 Cosine Similarity and Magnitude Index;435
56.4;3 Numerical Validation: 2-D Jacket Structure;436
56.5;4 Conclusions;439
56.6;Acknowledgments;439
56.7;References;439
57;Prediction of Strain Response in a Linear Beam System Using Frequency Response Function Between Strain and Acceleration;441
57.1;Abstract;441
57.2;1 Introduction;441
57.3;2 Theoretical Background;442
57.4;3 Excitation Test of Notched Simple Specimen;443
57.4.1;3.1 Preparation of Vibration Test;443
57.4.2;3.2 Response Data Acquisition;445
57.5;4 Prediction of Strain Response Using Acceleration;446
57.6;5 Conclusion;447
57.7;Acknowledgement;447
57.8;References;448
58;Review of ISO 1219 for Practical Use of Graphical Symbols and Circuit Diagrams;449
58.1;Abstract;449
58.2;1 Introduction;449
58.3;2 ISO 1219 Analysis and Discussion;450
58.3.1;2.1 Comparison of Old Version with New Version;450
58.3.2;2.2 Using Correct Symbols for Components;454
58.4;3 Conclusion;454
59;Analysis of Eddy Current Testing Method for Detection of Surface Hardening and Coating on Carbon Steel;456
59.1;Abstract;456
59.2;1 Introduction;456
59.3;2 Specimen;457
59.4;3 FEM Simulation;458
59.4.1;3.1 Simulation Setup;458
59.4.2;3.2 Simulation Results;459
59.5;4 Experimental Validation;460
59.5.1;4.1 Experiment Setup;460
59.5.2;4.2 Experiment Results;461
59.6;5 Conclusion;462
59.7;References;463
60;Effects of Major Design Parameters on Three-Stage Electro-Hydraulic Servovalve Performance;464
60.1;Abstract;464
60.2;1 Introduction;464
60.3;2 Basic Equations in the Main Valve;465
60.3.1;2.1 Continuity Equations in the Valve Chambers;466
60.3.2;2.2 Force Balance Equation in the Spool;466
60.4;3 Simulation Model of the Three-Stage Servovalve;467
60.5;4 Verification of the Simulation Model;469
60.5.1;4.1 The Pilot Valve;469
60.5.2;4.2 The Main Valve;470
60.6;5 Effects of Major Design Parameters on the Main Valve Performance;470
60.6.1;5.1 Damping Orifice Size A_{o};470
60.6.2;5.2 Flow Force in the Main Valve Spool;471
60.6.3;5.3 Supply Pressure to the Pilot Valve;472
60.6.4;5.4 Effect of Other Parameters;472
60.7;6 Conclusion;472
60.8;References;473
61;Effects of Piston Galleries on the Piston Temperatures of a Diesel Engine;474
61.1;Abstract;474
61.2;1 Introduction;474
61.3;2 Experiment;475
61.3.1;2.1 Piston with Cooling Gallery;475
61.3.2;2.2 Experimental Setup and Conditions;476
61.4;3 Result and Discussion;478
61.5;4 Conclusion;479
61.6;Acknowledgement;479
61.7;References;479
62;A Method for Measuring the Speed of Sound in a Rigid Pipe;480
62.1;Abstract;480
62.2;1 Introduction;480
62.3;2 Former Researches of Methods for Measuring the Speed of Sound in Rigid Pipes;481
62.3.1;2.1 Three Transducers Method [1];481
62.3.2;2.2 Anti-resonance Method [1];482
62.3.3;2.3 Transfer Matrix Method [2];483
62.4;3 A Novel Method for Measuring the Speed of Sound in Rigid Pipes with Frequency Series Form “Closed Conduit Method”;484
62.4.1;3.1 Configuration of the “Closed Conduit Method”;485
62.4.2;3.2 Measuring Principle in the “Closed Conduit Method”;485
62.5;4 Measurements in a Rigid Pipe;486
62.6;5 Conclusions;488
62.7;Acknowledgement;488
62.8;References;488
63;Study on Inherent Error of Pair Control Methods for Six Axis Manipulator with Hidden Actuators;489
63.1;Abstract;489
63.2;1 Introduction;489
63.3;2 Pair Control Methods for SDOF Motion;490
63.4;3 Inherent Error of Pair Control Methods;491
63.4.1;3.1 2D Rotations;491
63.4.2;3.2 3D Rotations;491
63.5;4 Summary;494
63.6;References;495
64;A Simulation of the Gerotor Motor with Cylinder Displacement Variation;496
64.1;Abstract;496
64.2;1 Introduction;496
64.3;2 Simulation Model;497
64.3.1;2.1 Basic Concept;497
64.3.2;2.2 Unit Component for Gerotor Motor;497
64.3.3;2.3 Motor Torque Calculation;501
64.3.4;2.4 Simulation Model Validation;502
64.4;3 Conclusion;503
64.5;References;504
65;The Effect of Preheating on Quality of Friction Stir Welding of Aluminum Alloy A5052;505
65.1;Abstract;505
65.2;1 Introduction;505
65.3;2 Methodology;506
65.3.1;2.1 Design Experiment;506
65.3.2;2.2 Mathematical Model;507
65.4;3 Experimental Details;509
65.4.1;3.1 Single-Factor Experiments;509
65.4.2;3.2 Multi-factor Experiments;509
65.5;4 Conclusion;513
65.6;References;513
66;Monitoring of Tooth Passing and Chatter Properties in End-Milling;514
66.1;Abstract;514
66.2;1 Introduction;514
66.3;2 Recursive Time Series Modeling;515
66.4;3 Practical Application;517
66.4.1;3.1 Measurement of End-Milling Force;517
66.4.2;3.2 Prediction and Mode Estimation of End-Milling Force;518
66.4.3;3.3 Power Spectrum and Frequency Response Function of End-Milling Force;520
66.5;4 Conclusions;523
66.6;Acknowledgement;523
66.7;References;523
67;A Study on Break-Away Bolt Design for a Marine Safety Break-Away Coupling Based on Elastic Stress Analysis;525
67.1;Abstract;525
67.2;1 Introduction;525
67.3;2 Conventional SBC Break-Away Bolts Analysis;527
67.4;3 Break-Away Bolt Design for 4” SBC;529
67.5;4 Conclusion;531
67.6;Acknowledgement;531
67.7;References;531
68;Motor Control;532
69;Controller Design for MIMO Servo System Using Polynomial Differential Operator – A Solution for Increasing Speed of an Induction Conveyor System;533
69.1;Abstract;533
69.2;1 Introduction;533
69.3;2 System Design;534
69.4;3 Modeling of a BDTS;535
69.5;4 Controller Design;536
69.6;5 Simulation and Experimental Results;540
69.6.1;5.1 Trapezoidal Velocity yr1;541
69.6.2;5.2 Trapezoidal Velocity yr2;543
69.6.3;5.3 Step Reference Input yr3;543
69.7;6 Conclusion;545
69.8;Acknowledgments;545
69.9;References;545
70;Adaptive Sliding Mode Controller for Induction Motor;547
70.1;Abstract;547
70.2;1 Introduction;547
70.3;2 Mathematical Model of Induction Machines;548
70.4;3 Sliding Mode Observer;549
70.4.1;3.1 Sliding Mode Observer for Speed Estimation;549
70.4.2;3.2 Flux Estimator;550
70.4.3;3.3 Stator Resistance Estimator;550
70.5;4 Sliding Mode Control;551
70.5.1;4.1 Sliding Mode Control;551
70.5.2;4.2 Gain Adaption Method;553
70.6;5 Simulations;553
70.7;6 Conclusions;556
70.8;Acknowledgement;556
70.9;References;556
71;Parameter Adaptation in Machine Model-Based Speed Observers for Sensorless Induction Motor Drive;558
71.1;Abstract;558
71.2;1 Introduction;558
71.3;2 Observers with SRAM;560
71.3.1;2.1 RF-MRAS Observer;560
71.3.2;2.2 Luenberger Observer;561
71.3.3;2.3 CB-MRAS Observer;562
71.4;3 Simulation Results;563
71.5;4 Conclusions;566
71.6;Acknowledgement;566
71.7;References;566
72;PID Speed Controller Optimization Using Online Genetic Algorithm for Induction Motor Drive;568
72.1;Abstract;568
72.2;1 Introduction;568
72.3;2 Mathematical Model of the Vector Controlled Induction Motor;569
72.4;3 Classical Speed Controller;571
72.5;4 Speed Controller Using Genetic Algorithm;572
72.6;5 Simulation Results;575
72.6.1;5.1 Classical PID Speed Controller;575
72.6.2;5.2 Online Tuned PID Speed Controller Using Genetic Algorithm;575
72.6.3;5.3 Notes;575
72.7;6 Conclusion;579
72.8;Acknowledgement;579
72.9;References;580
73;Closed Loop Motion Synchronous Velocity Control for AC Motor Drives – A Solution for Increasing Speed of a Cross-Belt Sorting Conveyor System;581
73.1;Abstract;581
73.2;1 Introduction;581
73.3;2 Cross Belt Sorting Conveyor System;582
73.3.1;2.1 Overall Cross-Belt Conveyor System;582
73.3.2;2.2 Synchronization of Multi-motor Drives in the CSCS;583
73.4;3 Closed-Loop Motion Control for AC Motor Drives Based on Vector Control Method;583
73.5;4 Experimental Results;586
73.6;5 Conclusion;589
73.7;Acknowledgments;589
73.8;References;589
74;Power System;591
75;Modified Bat Algorithm for Combined Economic and Emission Dispatch Problem;592
75.1;Abstract;592
75.2;1 Introduction;592
75.3;2 Problem Formulation;594
75.3.1;2.1 Objective Function;594
75.3.2;2.2 Constraints;594
75.4;3 Modified Bat Algorithm for CEED Problem;594
75.4.1;3.1 Conventional Bat Algorithm;594
75.4.2;3.2 Modified Bat Algorithm;595
75.5;4 Implementation of the MBA for the Considered Problem;596
75.5.1;4.1 Initialization;596
75.5.2;4.2 Updating New Velocity and New Position for Each Bat;596
75.5.3;4.3 Searching a New Solution Around the Global Best Solution;597
75.5.4;4.4 Selection of New Solution Using Loudness and Fitness Comparison;597
75.5.5;4.5 The Termination Criterion of the Search Process;597
75.6;5 Numerical Results;597
75.7;6 Conclusion;599
75.8;References;599
76;New Solutions to Modify the Differential Evolution Method for Multi-objective Load Dispatch Problem Considering Quadratic Fuel Cost Function;601
76.1;Abstract;601
76.2;1 Introduction;601
76.3;2 Formulation of Multi-objective Load Dispatch;602
76.4;3 Modified Differential Evolution for Mold Problem;604
76.5;4 Results and Discussions;605
76.5.1;4.1 System I with Three Thermal Units;606
76.5.2;4.2 System II with Six Thermal Units;608
76.6;5 Conclusion;609
76.7;References;609
77;Robotics;611
78;Locomotion Control of a Hexapod Robot Based on Central Pattern Generator Network;612
78.1;Abstract;612
78.2;1 Introduction;612
78.3;2 System Description and Kinematics Modeling;613
78.3.1;2.1 System Description;613
78.3.2;2.2 Kinematics Modeling of One Leg of the Hexapod Robot;614
78.4;3 Walking Gait Generated by CPG Network;615
78.4.1;3.1 Neuron Oscillator in CPG Model;616
78.4.2;3.2 Gait Planning Based on CPG Network;616
78.4.3;3.3 Mapping Function;618
78.4.4;3.4 End Effector Trajectory Tracking Controller Design;619
78.5;4 Simulation and Experimental Results;621
78.5.1;4.1 Gait Planning Simulation Results;621
78.5.2;4.2 Simulation and Experimental Results;621
78.6;5 Conclusion;624
78.7;Acknowledgment;625
78.8;References;625
79;Locomotion Control of a Hexapod Robot with Tripod Gait Using Central Pattern Generator Network;626
79.1;Abstract;626
79.2;1 Introduction;626
79.3;2 System Description and Kinematics Modeling;627
79.3.1;2.1 System Description;627
79.3.2;2.2 Kinematics Modeling of One Leg of the Hexapod Robot;627
79.4;3 Walking Gait Generated by CPG Network;630
79.4.1;3.1 Neuron Oscillator in CPG Model;630
79.4.2;3.2 Gait Planning Based on CPG Network;631
79.4.3;3.3 Mapping Function;632
79.4.4;3.4 End Effector Trajectory Tracking Controller Design;633
79.5;4 Simulation and Experimental Results;635
79.5.1;4.1 Gait Planning Simulation Results;635
79.5.2;4.2 Simulation and Experimental Results;637
79.6;5 Conclusion;639
79.7;Acknowledgment;640
79.8;References;640
80;Laboratory Test of Lifting Pump for Deep Seabed Manganese Nodule;642
80.1;Abstract;642
80.2;1 Introduction;642
80.3;2 Lifting Pump Design;644
80.3.1;2.1 Design Requirements;644
80.3.2;2.2 Electric Motor and Pump Design;644
80.3.3;2.3 Shroud Design;646
80.4;3 Driving System;646
80.4.1;3.1 Inverter;647
80.4.2;3.2 Generator and Step-up Transformer;647
80.5;4 Performance Test;648
80.5.1;4.1 Test Facility;648
80.5.2;4.2 Test Results;649
80.6;5 Conclusion;651
80.7;Acknowledgement;651
80.8;References;652
81;Distance Control for Pick-up Device System of Pilot Mining Robot;653
81.1;Abstract;653
81.2;1 Introduction;653
81.3;2 Experiment Target and Environment;654
81.3.1;2.1 Pilot Mining Robot;654
81.3.2;2.2 Pick-up Device System;656
81.3.3;2.3 Experiment Environment;656
81.4;3 Distance Control of Pick-up Device;657
81.4.1;3.1 Analysis the Nature of Pick-up Device;657
81.4.2;3.2 Parameter Identification of Pick-up Device;659
81.4.3;3.3 PI Gain Tuning for Distance Control;663
81.5;4 Conclusion;663
81.6;Acknowledgement;664
81.7;References;664
82;Optimal Control Method for Stable Walking Gait of a UXA-90 Light Robot;665
82.1;Abstract;665
82.2;1 Introduction;665
82.3;2 Mathematical Model of the Biped Robot;666
82.3.1;2.1 Kinematics Model of Biped Robot;666
82.3.2;2.2 Inverse Kinematics of the Biped Robot;667
82.3.3;2.3 Dynamic Model of the Biped Robot;667
82.4;3 Control for Biped Robot;668
82.4.1;3.1 ZMP Reference Generation for Walking Robots;669
82.4.2;3.2 Walking Pattern Generation by Optimal Tracking Control;669
82.4.3;3.3 Optimal Tracking Control for Motion of the Biped Robot;670
82.4.4;3.4 Calculation of ZMP from Robot’s Motion;671
82.5;4 Simulation Result;672
82.6;5 Conclusion;674
82.7;References;674
83;Stable Walking Gait Planning for 3D Biped Robot with Feet Applied for UXA90-Light;676
83.1;Abstract;676
83.2;1 Introduction;676
83.2.1;1.1 Research Overview;676
83.2.2;1.2 Robot UXA90-Light;678
83.3;2 Robot Model;678
83.3.1;2.1 Point Feet Robot Model Projected in Sagittal Plane;678
83.3.2;2.2 Robot with Feet Model Projected in Sagittal Plane;680
83.3.3;2.3 Robot with Feet Model Projected in Frontal Plane;681
83.4;3 Walking Gait Planning;682
83.5;4 Simulation Results;683
83.6;5 Conclusion;685
83.7;References;686
84;Mobile Robot Localization and Path Planning in a Picking Robot System Using Kinect Camera in Partially Known Environment;687
84.1;Abstract;687
84.2;1 Introduction;687
84.3;2 System Description;688
84.4;3 Kinematics Modeling;689
84.5;4 Theoretical Backgrounds for Image Processing;690
84.6;5 Localization Algorithm;692
84.6.1;5.1 Landmark Detection;692
84.6.2;5.2 Prediction and Update;693
84.7;6 Path Planning Using D* Lite Algorithm;695
84.8;7 Tracking Controller;697
84.9;8 Experimental Results;699
84.10;9 Conclusion;701
84.11;Acknowledgments;702
84.12;References;702
85;Development of Series Elastics Actuators for Physical Rehabilitation Devices;703
85.1;Abstract;703
85.2;1 Introduction;703
85.3;2 Series Elastic Actuator Principle;704
85.4;3 Apply SEA to Rehabilitation Devices;708
85.4.1;3.1 Real Problem of the Patient;708
85.4.2;3.2 Mechanical Design of Ankle and Wrist Rehabilitation Device;709
85.4.3;3.3 Control Strategy for Assistance;709
85.4.4;3.4 Performance;712
85.4.5;3.5 Assessment of the Training Result;712
85.5;4 Conclusion;713
85.6;References;713
86;Active Control for Rock Grinding Works of an Underwater Construction Robot Consisting of Hydraulic Rotary and Linear Actuators;714
86.1;Abstract;714
86.2;1 Introduction;714
86.3;2 Active Control of Rock Grinding;716
86.4;3 Experimental Results;720
86.5;4 Conclusion;722
86.6;5 Acknowledgment;722
86.7;References;722
87;Measuring Work Efficiency of the Rock-Crushing Operation of the Hydraulic System;724
87.1;Abstract;724
87.2;1 Introduction;724
87.3;2 System Description;725
87.4;3 Work Efficiency Measures of the Rock-Crashing Operation;726
87.5;4 Conclusion;728
87.6;Acknowledgment;728
87.7;References;728
88;Sensors;730
89;Development of Hetero-Core Fiber Optic Tip Tactile Sensors for an Artificial Fingertip;731
89.1;Abstract;731
89.2;1 Introduction;731
89.3;2 Proposed Sensor;732
89.3.1;2.1 Structure of a Hetero-Core Fiber Optic Tip Tactile Sensor;732
89.3.2;2.2 Contact Sensitivity;732
89.4;3 Artificial Fingertip Embedded with Proposed Sensors;734
89.5;4 Conclusion;736
89.6;References;736
90;Femtosecond Laser Internal Processing for an Optical Fiber Sensor Inducing Interference of Optical Waveguide;737
90.1;Abstract;737
90.2;1 Introduction;737
90.2.1;1.1 Femtosecond Laser;737
90.2.2;1.2 Optical Fiber Sensor;738
90.3;2 Principle of Proposed Sensor;738
90.4;3 Experiments and Results;740
90.4.1;3.1 Fabrication of Sensing Structure;740
90.4.2;3.2 Measurements;741
90.5;4 Conclusion;742
90.6;Acknowledgement;743
90.7;References;743
91;Determining Acceleration Factors for a MEMS Type Accelerometer;745
91.1;Abstract;745
91.2;1 Introduction;745
91.3;2 Failure Mode and Mechanism Analysis;747
91.4;3 The Accelerated Life Test;748
91.4.1;3.1 Vibration Test Equipment;748
91.4.2;3.2 Calculation of the no Failure Life Test Time;750
91.4.3;3.3 Determining the Acceleration Factors;751
91.4.3.1;3.3.1 The Acceleration Factor;751
91.4.3.2;3.3.2 Temperature;751
91.4.3.2.1;High and Low Temperature Tests;751
91.4.3.2.2;Thermal Deformation Analysis;752
91.4.4;3.4 An Equation for the Accelerated Life Test;753
91.5;4 Conclusion;754
91.6;References;754
92;Telecommunication;756
93;A Performance Analysis of an AF Two Hops Model in the Energy Harvesting Relay Network;757
93.1;1 Introduction;757
93.2;2 Network Model;759
93.3;3 Outage Probability and Throughput Analysis;760
93.3.1;3.1 The Outage Probability Analysis;760
93.3.2;3.2 The Throughput Analysis;762
93.4;4 Numerical Results;762
93.5;5 Conclusion;765
93.6;References;765
94;Secrecy Performance of Joint Relay and Jammer Selection Methods in Cluster Networks: With and Without Hardware Noises;767
94.1;Abstract;767
94.2;1 Introduction;767
94.3;2 System Model;768
94.4;3 Secrecy Outage Probability (SOP);771
94.4.1;3.1 The RAND Protocol;771
94.4.2;3.2 The BEST Protocol;772
94.5;4 Simulation Results;773
94.6;5 Conclusion;776
94.7;Acknowledgments;776
94.8;References;776
95;A Dynamic Cooperative MAC Protocol for Vehicular Ad-hoc Networks;778
95.1;1 Introduction;778
95.2;2 Protocol Description;779
95.2.1;2.1 Multi-hop Forwarder and Emergency Slot Reservation;780
95.2.2;2.2 Emergency Message Broadcast and Multi-hop Transmission;782
95.2.3;2.3 Service Message Transmission;782
95.3;3 Analytical Model;782
95.4;4 Performance Evaluation;786
95.5;5 Conclusion;787
95.6;References;787
96;A DF Performance Analysis in Half-Duplex and Full-Duplex Relaying Network;789
96.1;1 Introduction;789
96.2;2 Network Model;790
96.2.1;2.1 The Full Duplex Relaying Model;791
96.2.2;2.2 The Half-Duplex Relaying;793
96.3;3 The Outage Probability and Throughput Analysis;793
96.3.1;3.1 The Outage Probability Analysis;793
96.3.2;3.2 The Throughput Analysis;794
96.4;4 Numerical Results;795
96.5;5 Conclusion;799
96.6;References;799
97;Directional Multi-channel MAC for VANETs;801
97.1;1 Introduction;801
97.2;2 Antenna Model;803
97.3;3 The Proposed DMV Protocol;803
97.3.1;3.1 Main Idea;804
97.3.2;3.2 Multi-hop Forwarder Nomination;804
97.3.3;3.3 Safety Message Broadcast;805
97.3.4;3.4 Non-safety Message Transmission;807
97.3.5;3.5 The Operation of the DMV Protocol;807
97.3.6;3.6 Synchronization Collision Reduction;808
97.4;4 Performance Evaluation;808
97.5;5 Conclusion;809
97.6;References;810
98;Optimal Design of Cyclic Prefix in MIMO-OFDM System Over Nakagami-m Fading Channel;811
98.1;Abstract;811
98.2;1 Introduction;811
98.3;2 Nakagami-m Fading Channel;812
98.4;3 MIMO-OFDM System Model;813
98.5;4 Numerical Simulation;815
98.6;5 Conclusions;818
98.7;Acknowledgement;818
98.8;References;818
99;An Efficient Multi-channel MAC Protocol for Vehicular Ad Hoc Networks;820
99.1;1 Introduction and Related Works;820
99.2;2 System Model;822
99.3;3 EMMAC Protocol;823
99.3.1;3.1 Accessing Time Slots on the TP;825
99.3.2;3.2 Dynamic TDMA-Based Period Length;825
99.4;4 Performance Evaluation;826
99.5;5 Conclusion;828
99.6;References;828
100;Design of Low-Power 24 GHz Voltage-Controlled Oscillator;829
100.1;Abstract;829
100.2;1 Introduction;829
100.3;2 Circuit Modeling and Design;830
100.3.1;2.1 Overview of Automotive Collision Avoidance Radar;830
100.3.2;2.2 VCO Design and Analysis;831
100.4;3 Results and Discussion;833
100.5;4 Conclusions;834
100.6;Acknowledgements;834
100.7;References;834
101;On the Performance of Energy Harvesting for Decode-and-Forward Full-Duplex Relay Networks in Imperfect CSI Condition;836
101.1;1 Introduction;836
101.2;2 System Model;838
101.2.1;2.1 Energy Harvesting Phase;839
101.2.2;2.2 Information Transmission Phase;840
101.3;3 Performance Analysis;840
101.3.1;3.1 Outage Probability and System Throughput;841
101.3.2;3.2 Optimal Time Switching Factor;842
101.4;4 Numerical Results;842
101.4.1;4.1 Simulation Setup;843
101.5;5 Conclusion;846
101.6;References;846
102;Vehicle Technology;848
103;Vehicle Dynamic Analysis for the Ball-Screw Type Energy Harvesting Damper System;849
103.1;Abstract;849
103.2;1 Introduction;849
103.3;2 Modeling of the Ball-Screw Damper System;851
103.4;3 Comparing Experiment with Simulation Result;854
103.5;4 Conclusion;856
103.6;Acknowledgment;856
103.7;Appendix;856
103.8;References;857
104;Virtual Prototyping and Performance Analysis of an IVT Equipped Electric Vehicle;859
104.1;Abstract;859
104.2;1 Introduction;859
104.3;2 Power Efficiency of an Electric Motor;860
104.4;3 Infinitely Variable Transmission;862
104.5;4 Virtual Prototyping of an IVT into an Electric Vehicle;864
104.6;5 Performance Analysis and Discussion;867
104.7;6 Conclusions;868
104.8;Acknowledgement;868
104.9;References;869
105;System Design of an Unmanned Surface Vehicle for Autonomous Navigation;870
105.1;1 Introduction;870
105.2;2 Development of USV;871
105.2.1;2.1 Hardware System;871
105.2.2;2.2 Software System;872
105.3;3 Experimental Results;873
105.3.1;3.1 Remote Control;873
105.3.2;3.2 Autonomous Navigation;873
105.4;4 Conclusion;874
105.5;References;875
106;Vehicle Stability Controller Based on Adaptive Sliding Mode Algorithm with Estimated Vehicle Side-Slip Angle;876
106.1;Abstract;876
106.2;1 Introduction;876
106.3;2 Vehicle and Tire Mathematical Models;877
106.3.1;2.1 Vehicle Model;877
106.3.2;2.2 Tire Model;878
106.4;3 Controller Design;879
106.4.1;3.1 Control System;879
106.4.2;3.2 Vehicle Side-Slip Angle Estimation;879
106.4.3;3.3 Reference Yaw-Rate and Side-Slip Angle Generators;880
106.4.4;3.4 Adaptive Sliding Mode Controller;880
106.4.5;3.5 Pressure Generator;883
106.5;4 Simulation Results;883
106.6;5 Conclusions;885
106.7;References;885
107;A Model-Based Controller Development for a Series Hydraulic Hybrid Vehicle;887
107.1;Abstract;887
107.2;1 Introduction;887
107.3;2 System Configuration and Control-Oriented Model;888
107.4;3 Model-Based Controller;890
107.5;4 Simulation and Results;892
107.6;5 Conclusion;896
107.7;References;896
108;An Improvement of Rule-Based Control Strategy for a Series Hydraulic Hybrid Vehicle;898
108.1;Abstract;898
108.2;1 Introduction;898
108.3;2 System Description and Modeling;899
108.3.1;2.1 System Description;899
108.3.2;2.2 Mathematical Model;899
108.4;3 Control System Development;901
108.5;4 Simulation Results and Discussion;903
108.6;5 Conclusion;907
108.7;References;907
109;Position Recognition for an Autonomous Vehicle Based on Vehicle-to-Led Infrastructure;909
109.1;Abstract;909
109.2;1 Introduction;909
109.3;2 System Design;910
109.3.1;2.1 Color Specification;911
109.3.2;2.2 Color Measurement;913
109.3.3;2.3 LED Tunnel Lighting Design;914
109.4;3 Experiment and Result Consideration;914
109.4.1;3.1 Chromaticity Coordinates Measurement to Every Lanes in LED Tunnels;914
109.4.2;3.2 Chromaticity Coordinates and Functional Relation of Road Lane Position;914
109.5;4 Conclusion;916
109.6;Acknowledgements;917
109.7;References;917
110;Nonlinear Vehicle Stability Analysis;918
110.1;Abstract;918
110.2;1 Introduction;918
110.3;2 Vehicle Modeling;919
110.3.1;2.1 Coordinate Systems;919
110.3.2;2.2 Two-Track Vehicle Model;920
110.4;3 Vehicle Stability Analysis;922
110.5;4 Simulations and Results;923
110.6;5 Conclusion;926
110.7;Acknowledgement;927
110.8;References;927
111;Rapid Shortest Path Decision of Unmanned Aerial Vehicles with Kinematic Constraints;928
111.1;Abstract;928
111.2;1 Introduction;928
111.3;2 Background;929
111.4;3 Problem Statement;930
111.4.1;3.1 Smooth Curve;930
111.4.2;3.2 Kinematic Constraints;931
111.4.3;3.3 Associated Circles;932
111.4.4;3.4 Directions of Tangential Lines and Circles;933
111.4.5;3.5 Number of Cases and Determination of the Optimal Path;934
111.4.6;3.6 Types of Paths and Belt/Pulley Theory;935
111.4.7;3.7 Arc Lengths and Paths;936
111.5;4 Optimal Path Decision;937
111.6;5 Conclusion;939
111.7;References;940
112;Author Index;942