Duy / Dao / Zelinka | AETA 2017 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application | E-Book | sack.de
E-Book

E-Book, Englisch, Band 465, 1086 Seiten, eBook

Reihe: Lecture Notes in Electrical Engineering

Duy / Dao / Zelinka AETA 2017 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application


1. Auflage 2018
ISBN: 978-3-319-69814-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 465, 1086 Seiten, eBook

Reihe: Lecture Notes in Electrical Engineering

ISBN: 978-3-319-69814-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This proceedings book gathers papers presented at the 4th International Conference on Advanced Engineering Theory and Applications 2017 (AETA 2017), held on 7–9 December 2017 at Ton Duc Thang University, Ho Chi Minh City, Vietnam. It presents selected papers on 13 topical areas, including robotics, control systems, telecommunications, computer science and more. All selected papers represent interesting ideas and collectively provide a state-of-the-art overview. Readers will find intriguing papers on the design and implementation of control algorithms for aerial and underwater robots, for mechanical systems, efficient protocols for vehicular ad hoc networks, motor control, image and signal processing, energy saving, optimization methods in various fields of electrical engineering, and others. The book also offers a valuable resource for practitioners who want to apply the content discussed to solve real-life problems in their challenging applications. It also addresses common and related subjects in modern electric, electronic and related technologies. As such, it will benefit all scientists and engineers working in the above-mentioned fields of application.
Duy / Dao / Zelinka AETA 2017 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Foreword;6
2;Contents;8
3;Keynote Speech;19
4;Under-Actuated Systems: Nonlinear Control Showcase;20
4.1;Abstract;20
4.2;1 Nonlinear Control Theory;20
4.3;2 Under-Actuated Systems;21
4.4;3 Velocity Constrained Systems (Driftless System);21
4.5;4 Velocity Constrained Systems (Constant Drift);23
4.6;5 Under-Actuated Systems Without Gravity;24
4.7;6 Under-Actuated Systems with Gravity;25
4.8;7 Bilinear Systems;25
4.9;8 Motion Control (Unstable Zero-Dynamics);26
4.10;9 Motion Control (Periodic Motion);27
4.11;10 Motion Control (Snake);29
4.12;11 Concluding Comment;29
4.13;References;29
5;An Overview of Cyber Insecurity and Malicious Uses of Cyberspace;32
5.1;Abstract;32
5.2;1 Introduction;32
5.3;2 Cyber Insecurity;35
5.4;3 Malicious Uses of Cyberspace;37
5.5;4 Conclusions;40
5.6;References;40
6;Computer Science;41
7;A New Android Botnet Classification for GPS Exploitation Based on Permission and API Calls;42
7.1;Abstract;42
7.2;1 Introduction;42
7.3;2 Related Work;43
7.4;3 Methodology;44
7.4.1;3.1 Dataset;46
7.4.2;3.2 Feature Selection;46
7.4.3;3.3 Feature Extraction;47
7.4.4;3.4 Classification;48
7.5;4 Results and Discussion;48
7.6;5 Conclusion and Future Work;50
7.7;Acknowledgment;50
7.8;References;50
8;A Protocol for Securing E-Voting System;53
8.1;Abstract;53
8.2;1 Introduction;53
8.3;2 Analyze Some Existed Protocols;54
8.4;3 A New Proposed Protocol;56
8.5;4 The Experimental Results of the Proposed Protocol;60
8.6;5 Assessing the Security of the Proposed Protocol;60
8.6.1;5.1 Analyzing the Cryptographic Method Applied to Developing the E-Voting Protocol;60
8.6.2;5.2 Comparing the Developed Protocol with the Esoteric Protocol and Analyzing the Ability to Overcome the Risks of the E-Voting System;61
8.7;6 Conclusion;62
8.8;References;62
9;Processing Big Data in Field of Marketing Models Using Apache Spark;64
9.1;1 Introduction;64
9.2;2 Overview of Apache Spark;64
9.2.1;2.1 Cluster Manager;66
9.3;3 Experiment Design;66
9.3.1;3.1 Preprocessing Data;66
9.3.2;3.2 Input Data Set;67
9.3.3;3.3 Data Clustering;68
9.3.4;3.4 Cloud Computing;69
9.3.5;3.5 Report Outputs;70
9.3.6;3.6 Performance;71
9.4;4 Results;72
9.5;5 Conclusion;72
9.6;References;73
10;Firefly Algorithm: Enhanced Version with Partial Population Restart Using Complex Network Analysis;74
10.1;Abstract;74
10.2;1 Introduction;74
10.3;2 Firefly Algorithm;75
10.4;3 Proposed Complex Network Approach;76
10.4.1;3.1 Centralities;76
10.4.2;3.2 Partial Population Restart Control;78
10.5;4 Test Functions;80
10.6;5 Results;80
10.7;6 Conclusion;82
10.8;Acknowledgements;82
10.9;References;82
11;L-SHADE Algorithm with Distance Based Parameter Adaptation;84
11.1;Abstract;84
11.2;1 Introduction;84
11.3;2 Differential Evolution;85
11.3.1;2.1 Initialization;85
11.3.2;2.2 Mutation;86
11.3.3;2.3 Crossover;86
11.3.4;2.4 Selection;86
11.4;3 L-SHADE;87
11.4.1;3.1 Initialization;87
11.4.2;3.2 Mutation;88
11.4.3;3.3 Crossover;88
11.4.4;3.4 Historical Memory Updates;88
11.4.5;3.5 Linear Decrease in Population Size;89
11.5;4 Distance Based Parameter Adaptation;91
11.6;5 Experiments;91
11.7;6 Results and Discussion;91
11.8;7 Conclusion;94
11.9;Acknowledgements;94
11.10;References;94
12;Optimization;96
13;Application of the Box-Behnken Model Design to the Optimization of Process Parameters in the Convection-Drying of Channa Striata Fish;97
13.1;Abstract;97
13.2;1 Introduction;97
13.3;2 Materials and Methods;98
13.3.1;2.1 Materials;98
13.3.2;2.2 Methods;98
13.3.3;2.3 Determination of Optimized Parameters of Convection-Drying Channa Striatafish;99
13.3.4;2.4 Experimental Designs;100
13.4;3 Results and Discussion;101
13.4.1;3.1 Optimized Parameters of Convection-Drying Channa Striata Fish;101
13.4.2;3.2 Experiment Verified the Optimal Conditions and Evaluated the Authenticity of the Model of Drying Fish;104
13.5;4 Conclusions;104
13.6;Acknowledgements;105
13.7;References;105
14;A Study on Real-World Disaster Evacuation System with Mathematical Network Problem Solving Algorithm;107
14.1;Abstract;107
14.2;1 Introduction;107
14.3;2 Algorithm-Applied Disaster Evacuation Systems;108
14.3.1;2.1 Analysis on the Application Algorithm;108
14.3.2;2.2 Comparison with Existing Algorithms;110
14.4;3 The Application of Disaster Evacuation System to Actual Field;112
14.4.1;3.1 The Configuration of Disaster Evacuation System Applied with Algorithm;112
14.4.2;3.2 The Application Test in the Actual Field;114
14.5;4 Conclusion;116
14.6;References;117
15;Optimal Threshold Policies for Robust Data Center Control;118
15.1;1 Introduction;118
15.2;2 Background and Problem Definition;120
15.2.1;2.1 Markov Decision Process;120
15.2.2;2.2 Data Center Control;120
15.2.3;2.3 Threshold Policy;124
15.2.4;2.4 Robust MDP;124
15.3;3 Optimality of Threshold Policies;124
15.3.1;3.1 Threshold Policy in Multidimensional Case;125
15.3.2;3.2 Finite Horizon;125
15.3.3;3.3 Solving Method;126
15.4;4 Experimental Results;126
15.5;5 Conclusion;127
15.6;References;127
16;A Review of Real-World Applications of Particle Swarm Optimization Algorithm;129
16.1;Abstract;129
16.2;1 Introduction;129
16.3;2 Particle Swarm Optimization (PSO);130
16.4;3 Review of Recent Applications of PSO Based Methods;131
16.5;4 Conclusion;134
16.6;Acknowledgements;134
16.7;References;134
17;Differential Evolution for Constrained Industrial Optimization;137
17.1;Abstract;137
17.2;1 Introduction;137
17.3;2 Related Works and Motivation;138
17.4;3 Problem Design;138
17.4.1;3.1 Waste Processing Batch Reactor;138
17.4.2;3.2 Constrained Optimization;139
17.4.3;3.3 Optimized Parameters;140
17.5;4 Differential Evolution;140
17.5.1;4.1 Canonical DE;141
17.5.2;4.2 Success-History Based Adaptive Differential Evolution;141
17.6;5 Experiment Results;142
17.7;6 Conclusion and Results Analysis;144
17.8;Acknowledgements;145
17.9;References;145
18;Telecommunications;147
19;Multi-sensor Data Fusion Technique to Detect Radiation Emission in Wireless Sensor Networks;148
19.1;Abstract;148
19.2;1 Introduction;148
19.3;2 Main Characteristics of the System;149
19.4;3 Physical Characteristics and Mathematical Model;150
19.5;4 Sensors Data Fusion;153
19.6;5 Conclusions;156
19.7;Acknowledgements;156
19.8;References;156
20;Analytical Study of the IEEE 1609.4 MAC in Vehicular Ad Hoc Networks;158
20.1;1 Introduction;158
20.2;2 Analytical Model;160
20.3;3 Model Validation;165
20.4;4 Conclusion;166
20.5;References;166
21;Enhanced Self-sorting Based MAC Protocol for Vehicular Ad-Hoc Networks;168
21.1;1 Introduction;168
21.2;2 Related Works;168
21.3;3 Protocol Description;169
21.3.1;3.1 Queue Formation;170
21.3.2;3.2 Channel Reservation;171
21.3.3;3.3 Safety Message Forwarding and WSA Handshaking;171
21.3.4;3.4 Service Data Transmission;171
21.4;4 Performance Analysis;172
21.4.1;4.1 Packet Delivery Ratio of Safety Packets;172
21.4.2;4.2 Throughput of Service Application;172
21.4.3;4.3 Performance Evaluation;173
21.5;5 Conclusion;174
21.6;References;175
22;Adaptive TDMA and CSMA-Based MAC Protocols for Vehicular Ad Hoc Networks: A Survey;176
22.1;1 Introduction;176
22.2;2 Adaptive TDMA and CSMA-Based MAC Protocols;178
22.2.1;2.1 A Dedicated Multi-channel MAC Protocol;179
22.2.2;2.2 A Hybrid Efficient and Reliable MAC Protocol;179
22.2.3;2.3 An Efficient Time Slot Acquisition on the Hybrid MAC Protocol;180
22.2.4;2.4 An Efficient and Fast Broadcast Frame Adjustment Algorithm in the Hybrid MAC Protocol;180
22.2.5;2.5 Coordinated Multi-channel MAC Protocol;181
22.3;3 Challenges in Adaptive TDMA and CSMA-Based MAC Protocols;182
22.4;4 Conclusion;182
22.5;References;183
23;Electronics;185
24;A Low-Power Embedded IoT Microprocessor Design and Validation;186
24.1;Abstract;186
24.2;1 Introduction;186
24.3;2 The Low-Power Design Techniques for an Embedded IoTMicroprocessor (ARM-Lite RISC);187
24.4;3 The Proposed Low-Power Design Techniques;188
24.4.1;3.1 Low-Power Scheme-1: Gated-Clock;188
24.4.2;3.2 Low-Power Scheme-2: Memory-Interleaving;189
24.4.3;3.3 Low-Power Scheme-3: Structure-Reorder;190
24.4.4;3.4 Low-Power Scheme-4: Instruction-Coding;191
24.5;4 Experimental Results Analysis;192
24.6;5 Conclusions;194
24.7;References;195
25;A Deep Through-Microhole Fabricated Inside a Glass Optical Fiber by Use of a Near Ultraviolet Femtosecond Laser;196
25.1;Abstract;196
25.2;1 Introduction;196
25.3;2 Experiment;197
25.4;3 Results and Discussion;198
25.5;4 Conclusion;200
25.6;Acknowledgement;200
25.7;References;200
26;MicroEYE: A Wireless Multiple-Lenses Panoramic Endoscopic System;201
26.1;Abstract;201
26.2;1 Introduction;201
26.2.1;1.1 Global Minimally Invasive Surgery Analysis;201
26.2.2;1.2 Background of the Proposed MicroEYE Project;202
26.2.3;1.3 MicroEYE: A Two-Lenses Wireless Panoramic Endoscope;203
26.3;2 The Conventional Image Stitching Techniques;204
26.4;3 The Proposed Image Stitching Technique;204
26.5;4 The Hardware System with Chip Design Validation;205
26.6;5 The Low-Power ME Chip Design Technique (Clustered Voltage Scaling, CVS);208
26.7;6 System Integration, in-Vivo Experiment and Demonstration;209
26.8;7 Conclusions;210
26.9;References;211
27;Enhancement of Distributed Fiber Optic Vibration Sensors;212
27.1;Abstract;212
27.2;1 Introduction;212
27.3;2 State of the Art;213
27.4;3 Design of Novel Pulse Frequency Multiplier;215
27.5;4 Conclusion;219
27.6;Acknowledgement;219
27.7;References;219
28;Materials;221
29;Improving the Optical Properties of the 8500 K In-cup Packaging WLEDs by Using the Green-emitting CaF2:Ce3+, Tb3+ Phosphor;222
29.1;Abstract;222
29.2;1 Introduction;222
29.3;2 Physical Model and Mathematical Description;224
29.4;3 Results and Discussions;225
29.5;4 Conclusions;227
29.6;Acknowledgements;227
29.7;References;228
30;Simulation Study of Microstructure of the Amorphous ZnO;230
30.1;Abstract;230
30.2;1 Introduction;230
30.3;2 Calculation Method;231
30.4;3 Results and Discussion;232
30.5;4 Conclusion;235
30.6;Acknowledgment;235
30.7;References;236
31;The Thixoforming Process with Different Pressing Speed for Aluminum Material;237
31.1;Abstract;237
31.2;1 Introduction;237
31.3;2 The Die Design for Thixoforming Process;238
31.3.1;2.1 Experimental Parameters;238
31.3.2;2.2 The Die Design for the Thixoforming Process;239
31.3.3;2.3 Simulation and Experiment of the Pressing Step in the Thixoforming Process;242
31.4;3 Simulation Results;242
31.5;4 Experiment;246
31.6;5 Microstructure of Thixoforming Billet;248
31.7;6 Conclusion;249
31.8;References;250
32;The Impact of Distance Between Two Phosphor Layers on Luminous Flux and Color Quality of Remote Phosphor Package;251
32.1;Abstract;251
32.2;1 Introduction;251
32.3;2 Simulation and Computation;252
32.4;3 Simulation Results and Discussion;254
32.5;4 Conclusions;257
32.6;References;257
33;A Novel Approach to Fabricate Silicon Nanowire Field Effect Transistor for Biomolecule Sensing;259
33.1;Abstract;259
33.2;1 Introduction;259
33.3;2 Material and Method;260
33.4;3 Results and Discussion;261
33.5;4 Conclusion;265
33.6;References;266
34;Simulation of Ridge-Waveguide AlGaInP/GaInP Multiple-Quantum Well Diode Lasers;267
34.1;Abstract;267
34.2;1 Introduction;267
34.3;2 Laser Structure;268
34.4;3 Results and Discussions;269
34.5;4 Conclusions;271
34.6;References;272
35;Signal Processing;273
36;Experimental Evaluation of Steady State Visual Evoked Potentials for Brain Machine Interface;274
36.1;Abstract;274
36.2;1 Introduction;274
36.3;2 Steady State Visual Evoked Potentials (SSVEP);275
36.4;3 Experimental Methods;276
36.4.1;3.1 Experimental Design;276
36.4.2;3.2 Brainwave Preprocessing;277
36.5;4 Classification of SSVEP Response;278
36.6;5 Experiment;279
36.6.1;5.1 Experimental Conditions;279
36.6.2;5.2 Evaluation of Classification Performance;280
36.6.3;5.3 Evaluation of Recognition Speed and Information Transfer Capability;282
36.7;6 Conclusion;283
36.8;References;283
37;EMG-Based Interface Multi-degree of Freedom and Optionality;285
37.1;1 Introduction;285
37.2;2 MIMO-NARX Model;286
37.2.1;2.1 NARX Model;287
37.2.2;2.2 Became NARX Model into Multi Input and Multi Output;288
37.3;3 Bayesian Network;288
37.4;4 Measurement of Forearm Movements;289
37.4.1;4.1 Measurement of Myoelectric and Joint Angle;289
37.4.2;4.2 Processing Myoelectric;290
37.5;5 Estimating Joint Angle of Forearm Movements by MIMO-NARX Model;290
37.6;6 To Decide the Number of Terms of NARX Model by Bayesian Network;292
37.7;7 Conclusion;294
37.8;References;294
38;Motion and Force Estimation Based on the NARX with an EMG Signal;295
38.1;1 Introduction;295
38.2;2 Measurement and Preparation of the EMG Signal;296
38.3;3 System Identification Based on the EMG Signal;297
38.3.1;3.1 RLS Method;298
38.3.2;3.2 The NARX Model;299
38.4;4 Model Construction Based on the EMG Signal and the Wrist Angle;300
38.4.1;4.1 System Configuration of Metering Experiment for the Angle;300
38.4.2;4.2 Estimation Result of Angle;301
38.5;5 Model Construction Based on EMG Signal and Force;302
38.5.1;5.1 System Configuration of Metering Experiment for Force;302
38.5.2;5.2 Estimation Result of Force;303
38.6;6 Conclusion;304
38.7;References;304
39;The Estimation Method of Force by Using Kinect Camera;306
39.1;1 Introduction;306
39.2;2 Measurement Condition;307
39.3;3 The Driving Torque Estimation Method by Using Newton Euler Method;308
39.4;4 Physical Parameter Estimation;310
39.4.1;4.1 Joint Angle Estimation;310
39.4.2;4.2 Mass Estimation Method;312
39.4.3;4.3 Inertia Tensor Estimation;312
39.5;5 Verification of Estimating Result;313
39.6;6 Conclusion;315
39.7;References;316
40;Image Processing;317
41;Real-Time Root Monitoring of Hydroponic Crop Plants: Proof of Concept for a New Image Analysis System;318
41.1;1 Introduction;318
41.2;2 System Design;320
41.2.1;2.1 Setup and Operation;321
41.2.2;2.2 Root Measurement;322
41.2.3;2.3 Problem Identification;322
41.3;3 Results;324
41.3.1;3.1 Root Measurements;324
41.3.2;3.2 Problem Identification;325
41.4;4 Further Work;327
41.5;5 Conclusion;327
41.6;References;327
42;A New Approach of 2D Measurement of Injury Rate on Fish by a Modified K-means Clustering Algorithm Based on L*A*B* Color Space;329
42.1;Abstract;329
42.2;1 Introduction;329
42.3;2 Calculation for Injury Rate;330
42.4;3 Experimental Results;334
42.5;4 Conclusion;337
42.6;Acknowledgements;338
42.7;References;338
43;Determination of the Fish Surface Area and Volume Using Ellipsoid Approximation Method Applied for Image Processing;339
43.1;Abstract;339
43.2;1 Introduction;339
43.3;2 Mathematical Modeling;340
43.3.1;2.1 Preparation of Samples;340
43.3.2;2.2 Surface Area and Volume of Ellipsoid;341
43.3.3;2.3 The Partition Disc to Determine Surface Area and Volume;342
43.3.4;2.4 Image Processing;345
43.3.5;2.5 Image Acquisition and Analysis;345
43.4;3 Results and Discussion;346
43.4.1;3.1 Fish Shape Extraction;346
43.4.2;3.2 Surface Area and Volume Computation;346
43.5;4 Conclusion;348
43.6;Acknowledgement;348
43.7;Appendix A;348
43.8;Appendix B;350
43.9;References;352
44;Recognition and Grasping Objects from 3D Environment by Combining Depth and Color Stereo Image in the Mobile Picking Robot System;353
44.1;Abstract;353
44.2;1 Introduction;353
44.3;2 System Description;354
44.4;3 Proposed Algorithm;355
44.4.1;3.1 Mapping RGB Image into Depth Map;355
44.4.2;3.2 Object Recognition;355
44.4.3;3.3 Grasping Object;356
44.5;4 Experimental Results;358
44.6;5 Conclusion;361
44.7;Acknowledgments;361
44.8;References;361
45;Control Systems;363
46;Aerial Attitude Control of Hopping Robots Using Reaction Wheels: Evaluation of Prototype II in the Air;364
46.1;Abstract;364
46.2;1 Introduction;364
46.3;2 Estimation Method of Attitude Angle Using 9 Axis Motion Sensors;366
46.4;3 Aerial Attitude Control System Design;367
46.5;4 Experiment of Aerial Attitude Control;370
46.5.1;4.1 Experimental Setup;370
46.5.2;4.2 Experimental Results;371
46.6;5 Conclusion;374
46.7;References;374
47;Reference Trajectory Generation of Laser Beam in Consideration of Response Speed of Laser Processing Machine;376
47.1;Abstract;376
47.2;1 Introduction;376
47.3;2 System Identification of Galvanometer Scanner;377
47.3.1;2.1 Overview of System Configuration;377
47.3.2;2.2 System Identification;378
47.4;3 Generation of Modified Reference Trajectory Using Inverse Characteristics;379
47.4.1;3.1 Modified Reference Trajectory Generation Algorithm;379
47.4.2;3.2 Verification by Simulation;379
47.5;4 Experiment;380
47.5.1;4.1 Structure of Experimental Apparatus;380
47.5.2;4.2 Procedure and Conditions;381
47.5.3;4.3 Experimental Results of System Identification;382
47.5.4;4.4 Evaluation Results of Laser Beam Trajectory;382
47.6;5 Conclusion;385
47.7;References;385
48;State Estimation of Internal Combustion Engine Based on Mathematical Model;386
48.1;1 Introduction;386
48.2;2 Experimental System;388
48.3;3 Engine Model;389
48.3.1;3.1 Piston-Crank Mechanism;389
48.3.2;3.2 Combustion Process;390
48.3.3;3.3 Air Intake System;391
48.4;4 State Estimation Applying the UKF;392
48.4.1;4.1 Construction of Spreading System;392
48.4.2;4.2 Discretization of Engine Model;393
48.4.3;4.3 Verification of Estimated Results;393
48.5;5 Conclusions;395
48.6;References;395
49;Analysis of the Relationship Between Operational Mastery Process and Balance Capability in Daily Life for Unstable Personal Vehicles;397
49.1;1 Introduction;397
49.2;2 Model Derivation;398
49.2.1;2.1 Balance Board Model;399
49.2.2;2.2 Integrates the Model of the Balance Board and the Human;400
49.3;3 Control System Design;402
49.3.1;3.1 Linearization;402
49.3.2;3.2 Model-Based Stabilizing Control Based on State Dependent Riccati Equation;403
49.3.3;3.3 Verification of Simulation Result;404
49.4;4 Conclusion;406
49.5;References;406
50;Vertical Motion Control of Crane Without Load Position Information Using Nonlinear Control Theory;408
50.1;Abstract;408
50.2;1 Introduction;408
50.3;2 Mathematical Model;409
50.4;3 Controller Design;411
50.5;4 Experimental Results;414
50.5.1;4.1 Parameters of Motor-Winch System;414
50.5.2;4.2 Experimental Data Acquisition;415
50.5.3;4.3 The Relationship Between the Load Position and Rope Tension Force;416
50.5.4;4.4 Experimental Results;416
50.6;5 Conclusions;418
50.7;Acknowledgment;418
50.8;References;418
51;Feedback Control of Antagonistic-Type Twisted and Coiled Polymer Actuator;419
51.1;Abstract;419
51.2;1 Introduction;419
51.3;2 Method;420
51.4;3 Numerical Simulations;421
51.4.1;3.1 System Identification;421
51.4.2;3.2 Simulation Results;423
51.5;4 Experiments;424
51.5.1;4.1 Experiment Results;424
51.5.2;4.2 PID Control Experiment;424
51.6;5 Conclusion;426
51.7;Acknowledgements;427
51.8;References;427
52;Performance Evaluation of Grasping Force Control Based on Fall Velocity Control of Grasping Object for Telemanipulation Systems;428
52.1;Abstract;428
52.2;1 Introduction;428
52.3;2 Modeling of the Control Plant;429
52.3.1;2.1 Modeling of a Grasping Object;429
52.3.2;2.2 Modeling of the Slave Device;431
52.4;3 Grasping Force Control System;432
52.4.1;3.1 Design of the Falling Velocity Control System;432
52.4.2;3.2 Algorithm to Modify Grasping Force;433
52.4.3;3.3 Design of the Grasping Force Control System;434
52.5;4 Experiment;434
52.5.1;4.1 Experimental Setup;434
52.5.2;4.2 Performance Evaluation of the Falling Velocity Control System;435
52.5.3;4.3 Performance Evaluation of the Grasping Force Control System;436
52.6;5 Conclusion;437
52.7;References;437
53;Damping Control of Suspended Load for Truck Cranes in Consideration of Control Input Dimension;439
53.1;Abstract;439
53.2;1 Introduction;439
53.3;2 Modeling;440
53.3.1;2.1 Modeling of Crane Boom;440
53.3.2;2.2 Augmented System of Crane Boom with Valve Controller;441
53.3.3;2.3 Augmented Crane System Including Suspended Load Dynamics;443
53.4;3 Control System Design;443
53.5;4 Experiment of Load Damping Control of Truck Crane;445
53.5.1;4.1 Experimental Procedure;445
53.5.2;4.2 Experimental Result;448
53.6;5 Conclusion;449
53.7;References;449
54;Model-Based Clustering of Time Series Based on State Space Generative Models;450
54.1;Abstract;450
54.2;1 Introduction;450
54.3;2 Model Specification;451
54.3.1;2.1 Finite Mixture Model;451
54.3.2;2.2 Time Series Generative Model;452
54.3.3;2.3 Hierarchical Model Overview;454
54.4;3 Model Estimation;455
54.4.1;3.1 MCMC Initialization;455
54.4.2;3.2 MCMC Iteration Until Convergence;456
54.4.3;3.3 Model Identification and Cluster Assignment;458
54.5;4 Conclusions;458
54.6;References;459
55;Dynamic Programming Based Adaptive Optimal Control for Inverted Pendulum;460
55.1;Abstract;460
55.2;1 Introduction;460
55.3;2 Adaptive Optimal Control Design;461
55.4;3 Simulation Results;468
55.5;4 Conclusion;469
55.6;References;470
56;State Estimation of a Yoyo Based on a Model with Elasticity of a String;471
56.1;1 Introduction;471
56.2;2 Problem Establishment;472
56.3;3 Yoyo Model with the Elasticity of the String;472
56.4;4 State Estimation Based on the Yoyo Model;475
56.5;5 Conclusion;479
56.6;References;479
57;PI Sliding Mode Control for Active Magnetic Bearings in Flywheel;481
57.1;Abstract;481
57.2;1 Introduction;481
57.3;2 Active Magnetic Bearing System in Flywheel Modeling;482
57.4;3 PI Sliding Mode Control Design;484
57.4.1;3.1 PI Sliding Surface;484
57.4.2;3.2 Control Law Design;486
57.5;4 Simulation;486
57.6;5 Conclusion;490
57.7;References;490
58;A Study for Learning Method of Modified PID Controller with On-line Hybrid Genetic Algorithm;491
58.1;Abstract;491
58.2;1 Introduction;491
58.3;2 Learning of PID Controller;492
58.3.1;2.1 Controlled System;492
58.3.2;2.2 Limitation of PID Parameter’s Solution Domain;492
58.3.3;2.3 Limitation of Time Range for Object Function;496
58.3.4;2.4 Modified PID Controller;496
58.3.5;2.5 Simulation with Hybrid GA;497
58.4;3 Conclusion;500
58.5;References;500
59;Backstepping-Based Adaptive Velocity Tracking Controller Design for a Winding Spindle System;501
59.1;1 Introduction;501
59.2;2 System Modeling;502
59.3;3 Controller Design;504
59.4;4 Experimental Results;508
59.5;5 Conclusion;511
59.6;References;512
60;Study on Optimized Guidance and Robust Control for the Ship Maneuvering;513
60.1;Abstract;513
60.2;1 Introduction;513
60.3;2 Mathematical Model of a Ship;514
60.4;3 Guidance and Control Design;515
60.4.1;3.1 Guidance Design;515
60.4.2;3.2 Maneuvering Control Design;517
60.5;4 Simulation Results;520
60.6;5 Conclusion;522
60.7;Acknowledgement;522
60.8;References;522
61;Advanced Control Strategy of Dynamic Voltage Restorers for Distribution System Using Sliding Mode Control Input-Output Feedback Linearization;524
61.1;Abstract;524
61.2;1 Introduction;524
61.3;2 Overview of DVR System;525
61.3.1;2.1 System Modeling;525
61.3.2;2.2 Generation of Voltage References;526
61.4;3 Proposed Control Strategy Using Sliding Mode Input-Output Feedback Linearization;527
61.4.1;3.1 Input-Output Feedback Linearization Control;527
61.4.2;3.2 Sliding Mode Input-Output Feedback Linearization Controller;528
61.5;4 Simulation Results;530
61.6;5 Conclusions;533
61.7;Acknowledgment;533
61.8;References;533
62;Optimal Pump Scheduling to Pressure Management for Large-Scale Water Distribution Systems;535
62.1;1 Introduction;535
62.2;2 Formulation of MINLP for Efficient Optimization of Pressure Management;537
62.2.1;2.1 Modeling of Pumping Stations;537
62.2.2;2.2 Formulation of Pressure Management Regulation;537
62.2.3;2.3 Decomposition of the MINLP;539
62.3;3 Case Study;539
62.4;4 Conclusions;543
62.5;References;543
63;Model Predictive Control with Both States and Input Delays;545
63.1;Abstract;545
63.2;1 Introduction;545
63.3;2 Model Predictive Control Design;546
63.4;3 Main Results;547
63.5;4 Simulated Example;551
63.6;5 Conclusion;555
63.7;References;555
64;On the Hamiltonian Approach to the Collocated Virtual Holonomic Constraints in the Underactuated Mechanical Systems;557
64.1;1 Introduction;557
64.2;2 Preliminary Definitions and Results;559
64.3;3 Hamiltonian Description;562
64.4;4 Main Results;563
64.5;5 Case Study: The Mechanical Four Link Chain;566
64.5.1;5.1 Generalized Acrobot - Engaging the Unactuated Cyclic Variable;566
64.5.2;5.2 The Mechanical Four Link Chain, the Collocated VHCs and GA;568
64.6;6 Conclusions and Outlooks;570
64.7;References;570
65;Robotics;572
66;Continuous Genetic Algorithm Aiding to Quadcopter Controller Design;573
66.1;Abstract;573
66.2;1 Introduction;573
66.3;2 Quadcopter Configuration;574
66.4;3 The Continuous GA Optimal PID Controller;575
66.5;4 Simulation Results;576
66.6;5 Conclusion;580
66.7;References;581
67;Control System Design of Four Wheeled Independent Steering Automatic Guided Vehicles (AGV);582
67.1;Abstract;582
67.2;1 Introduction;582
67.3;2 System Modeling;583
67.4;3 Control System Design;584
67.5;4 Simulation Result;586
67.6;5 Conclusion;588
67.7;Acknowledgment;588
67.8;References;588
68;A Guide to Selecting Path Planning Algorithm for Automated Guided Vehicle (AGV);589
68.1;Abstract;589
68.2;1 Introduction;589
68.3;2 Path Planning Algorithm;590
68.4;3 System Configuration;593
68.5;4 Simulation and Experimental Results;594
68.6;5 Conclusion;597
68.7;Acknowledgment;597
68.8;References;597
69;Path Following Control of Bike Robot;599
69.1;1 Introduction;599
69.2;2 Bicycle Robot;600
69.3;3 Path Generation;601
69.3.1;3.1 Proposed Method;601
69.3.2;3.2 Algorithm;602
69.4;4 Numerical Simulation;604
69.4.1;4.1 Path Generation;604
69.4.2;4.2 Path Following;605
69.5;5 Concluding Remarks;607
69.6;References;608
70;Online Training the Radial Basis Function Neural Network Based on Quasi-Newton Algorithm for Omni-directional Mobile Robot Control;609
70.1;Abstract;609
70.2;1 Introduction;609
70.3;2 Radial Basis Function Neural Networks;610
70.4;3 The Quasi-Newton Algorithm;611
70.5;4 Adaptive Sliding Mode Control with Radial Basis Function Neural Network for Omni-directional Mobile Robot;612
70.5.1;4.1 Omni-directional Mobile Robot Model;612
70.5.2;4.2 Adaptive Sliding Mode Controller Design for Trajectory Tracking;613
70.5.3;4.3 Simulation Results;615
70.6;5 Conclusion;618
70.7;References;618
71;A Study on Looking for Shortest Trajectory of Mobile Robot Using A* Algorithm;619
71.1;Abstract;619
71.2;1 Introduction;619
71.3;2 Mobile Robot Design;620
71.3.1;2.1 Mechanical Design;620
71.3.2;2.2 Electrical Design;621
71.3.3;2.3 Kinematic Problem;621
71.4;3 Looking for Shortest Trajectory Algorithm;623
71.4.1;3.1 Review of A* Algorithm;623
71.4.2;3.2 Example About Using A* Algorithm;623
71.5;4 Simulation;625
71.6;5 Experimental Results;627
71.7;6 Conclusion;628
71.8;References;628
72;Independent Joint Control System Design Method for Robot Motion Reconstruction;629
72.1;Abstract;629
72.2;1 Introduction;629
72.3;2 System Modeling;630
72.3.1;2.1 Problem Statement;630
72.3.2;2.2 Method Demonstration;631
72.3.3;2.3 Mathematical Model;631
72.4;3 Control Design;633
72.4.1;3.1 Control Design for the First Joint and the Second Joint;634
72.4.2;3.2 Control Design for the Other Joints;635
72.5;4 Experiment;636
72.5.1;4.1 Experimental Setup;636
72.5.2;4.2 Experimental Results;639
72.6;5 Conclusion and Future Work;639
72.7;Acknowledgement;639
72.8;References;640
73;Walking Figure Generating in Consideration of Ground Reaction Force;641
73.1;1 Introduction;641
73.2;2 Construction of Disturbance Observer;642
73.2.1;2.1 Design Overview;642
73.2.2;2.2 Disturbance observer;642
73.2.3;2.3 Modeling of Legs of a Hexapod Robot;644
73.2.4;2.4 Design of Disturbance Observer;645
73.3;3 Estimation of Ground Reaction Force by Disturbance Observer;646
73.4;4 Conclusion;648
73.5;References;648
74;Study on the Combined Underwater Tracked Vehicle System with a Rock Crushing Tool;649
74.1;Abstract;649
74.2;1 Introduction;649
74.3;2 Assumption and Terminology for Simulation;650
74.3.1;2.1 Basic Assumptions;650
74.3.2;2.2 Terminology;651
74.4;3 Analysis of Force and Moment of the RC Tool;652
74.4.1;3.1 Analysis of Cutting Forces;652
74.4.2;3.2 Resistance Forces;654
74.4.3;3.3 Analysis of the Traction of the UTV;655
74.4.4;3.4 Analysis of the Moment of the RC Tool;655
74.5;4 Application Example;656
74.5.1;4.1 System Description;656
74.5.2;4.2 Steps of Calculation for Design Process;657
74.5.3;4.3 Results and Discussion;657
74.6;5 Conclusion;659
74.7;Acknowledgements;659
74.8;References;659
75;Designing Optimal Trajectories and Tracking Controller for Unmanned Underwater Vehicles;660
75.1;Abstract;660
75.2;1 Introduction;660
75.3;2 Depth Motion Equation of UUV;661
75.4;3 Designing Optimal Trajectories;661
75.4.1;3.1 Time-Optimal Trajectories (TOTs);661
75.5;4 Tracking Controller;665
75.5.1;4.1 Control Algorithm;665
75.5.2;4.2 Sliding Mode Control Law;665
75.6;5 Simulation and Discussion;666
75.6.1;5.1 Simulation 1;668
75.6.2;5.2 Simulation 2;668
75.7;6 Conclusion;669
75.8;Acknowledgements;670
75.9;References;670
76;Simulation and Experiment of Underwater Vehicle Manipulator System Using Zero-Moment Point Method;671
76.1;1 Introduction;671
76.2;2 Dynamic Modeling;672
76.3;3 Redundancy Analysis;673
76.4;4 Simulation;676
76.5;5 Experiment;677
76.6;6 Conclusion;677
76.7;References;678
77;Development of Ray-Type Underwater Glider;679
77.1;1 Introduction;679
77.2;2 Dynamic Modeling;680
77.2.1;2.1 Coordinate System and Mathematical Model;680
77.2.2;2.2 Dual-Buoyancy Engine Design;682
77.3;3 Motion Performance Analysis;683
77.3.1;3.1 Simulation 1 - Underwater Glider Model;683
77.3.2;3.2 Simulation 2 - Dual-Buoyancy Analysis;685
77.4;4 Conclusion;687
77.5;References;687
78;Modeling and Evaluating Motion Performance of Robotic Fish with a Pair of Non-uniform Pectoral Fins;688
78.1;Abstract;688
78.2;1 Introduction;688
78.3;2 Dynamic Modeling for 2D Motion;689
78.3.1;2.1 Kinematic Model;690
78.3.2;2.2 Dynamic Model;690
78.4;3 Swimming Modes and Mechanical Efficiency;694
78.5;4 Simulation Results and Discussion;695
78.6;5 Conclusions and Future Works;696
78.7;References;697
79;Modeling and Control System Design of Four Wheel Independent Steering Automatic Guided Vehicle (AGV);698
79.1;Abstract;698
79.2;1 Introduction;698
79.3;2 System Modeling;699
79.4;3 Control System Design;700
79.5;4 Simulation Result;702
79.6;5 Conclusion;705
79.7;Acknowledgment;705
79.8;References;705
80;Development of a Module Robot for Glass Façade Cleaning Robot;706
80.1;1 Introduction;706
80.2;2 System Design for Glass Façade Cleaning Robot;708
80.3;3 Trajectory Generation;710
80.3.1;3.1 Inverse Kinematics;710
80.3.2;3.2 5th Degree Polynomial Interpolation;711
80.3.3;3.3 Gait Generation Based on Sequential Control;713
80.4;4 Experiment;713
80.5;5 Conclusion;715
80.6;References;715
81;Tracking Controller Design for Omni-Directional Automated Guided Vehicles Using Backstepping and Model Reference Adaptive Control;717
81.1;1 Introduction;717
81.2;2 System Modeling;718
81.3;3 Controller Design;720
81.4;4 Simullation Results;723
81.5;5 Conclusion;726
81.6;References;726
82;Path Planning for Automatic Guided Vehicle with Multiple Target Points in Known Environment;728
82.1;Abstract;728
82.2;1 Introduction;728
82.3;2 Path Planning Algorithm;729
82.3.1;2.1 D* Lite Path Planning Algorithm;732
82.3.2;2.2 Modified D* Lite Path Planning Algorithm;733
82.4;3 Simulation and Experimental Results;735
82.5;4 Conclusion;737
82.6;Acknowledgement;737
82.7;References;737
83;Modeling of Rolling Locomotion on a Reconfigurable Quadruped Robot with Servos for State Estimation;738
83.1;1 Introduction;738
83.2;2 Problem Establishment;739
83.3;3 Model of the Rolling Reconfigurable Robot with Servos;740
83.4;4 Simulations of Rolling Locomotion on the Reconfigurable Quadruped Robot;743
83.5;5 Conclusion;745
83.6;References;745
84;Study on Determining the Number of Fin-Rays of a Gymnotiform Undulating Fin Robot;747
84.1;Abstract;747
84.2;1 Introduction;747
84.3;2 System Formulation;748
84.4;3 Experimental Result;751
84.5;4 Conclusion;753
84.6;References;754
85;Study on Design, Analysis and Control an Underwater Thruster for Unmanned Underwater Vehicle (UUV);755
85.1;Abstract;755
85.2;1 Introduction;755
85.3;2 Mechanism Design;756
85.3.1;2.1 Propeller;757
85.3.2;2.2 Thruster Housing;758
85.3.3;2.3 Magnetic Coupling;758
85.4;3 Simulation;760
85.4.1;3.1 Dynamic Model of BLDC;760
85.4.2;3.2 Control Algorithm for BLDC;761
85.4.3;3.3 Simulation Results;763
85.5;4 Experiments;764
85.6;5 Conclusion;765
85.7;Acknowledgements;766
85.8;References;766
86;Design and Implement a Fuzzy Autopilot for an Unmanned Surface Vessel;767
86.1;Abstract;767
86.2;1 Introduction;767
86.3;2 Ship Dynamics;768
86.3.1;2.1 The First-Order Nomoto Model;768
86.3.2;2.2 Disturbance;768
86.4;3 Identification of Nomoto Model Using Kempf’s Zig-zag Maneuver;769
86.5;4 Fuzzy Logic Controller;770
86.6;5 Simulation and Experiment;772
86.6.1;5.1 Experimental Identification of Nomoto Model;773
86.6.2;5.2 Step Response Simulation;774
86.6.3;5.3 Step Response Experimental;775
86.7;6 Conclusion;776
86.8;References;777
87;Heading and Depth Control of Autonomous Underwater Vehicles via Adaptive Neural Network Controller;778
87.1;Abstract;778
87.2;1 Introduction;778
87.3;2 Dynamic Model;779
87.4;3 Description of the ANNAI (Adaptive Neural Network by Adaptive Interaction) Controller;780
87.5;4 Heading and Depth Control System;781
87.5.1;4.1 ANNAI-Based Heading Control System;781
87.5.2;4.2 ANNAI-Based Depth Control System;782
87.6;5 Simulation Results;783
87.7;6 Conclusion;786
87.8;References;786
88;Nonlinearities Compensation Method for Application to Robot Manipulators Using Time-Delay Estimation;788
88.1;Abstract;788
88.2;1 Introduction;788
88.3;2 System Modeling;789
88.3.1;2.1 Problem Formulation;789
88.3.2;2.2 Method Demonstration;790
88.3.3;2.3 Mathematical Model;791
88.4;3 Control Design;793
88.4.1;3.1 Control Structure with Time-Delay Estimation (TDE);793
88.4.2;3.2 Stability Analysis;794
88.5;4 Experiment Studies;794
88.5.1;4.1 Experimental Setup;794
88.5.2;4.2 Experimental Results;795
88.6;5 Conclusion;798
88.7;Acknowledgement;798
88.8;References;798
89;Motor Control;800
90;Development of the Removable Electric Drive System for Wheelchair Running on Public Road;801
90.1;1 Introduction;801
90.2;2 Driving System Design;802
90.2.1;2.1 Needs for Wheelchair Users;802
90.2.2;2.2 Derivation of Load During Running;803
90.2.3;2.3 Selection Result of a Motor and a Gear Ratio;805
90.3;3 Experimental Model Production;805
90.3.1;3.1 Motor Identification;805
90.3.2;3.2 Identification Result of Motor;806
90.3.3;3.3 Producted Experimental Model;807
90.4;4 Verification Experiments;808
90.4.1;4.1 The Requirements of the Driving Inspection;808
90.4.2;4.2 Verification Results;808
90.5;5 Conclusion;809
90.6;References;810
91;PI-Based Fuzzy Speed Controller with PWM Direct Torque Control for Induction Motor Drive;811
91.1;Abstract;811
91.2;1 Introduction;811
91.3;2 Fuzzy Logic Design for Speed Controller;813
91.4;3 Experimental Results;814
91.5;4 Conclusions;819
91.6;Acknowledgement;819
91.7;References;819
92;Fast Maximum Power Point Tracking Control for Variable Speed Wind Turbines;821
92.1;Abstract;821
92.2;1 Introduction;821
92.3;2 Modeling of Wind Turbine Systems;822
92.4;3 Control of MPPT;824
92.4.1;3.1 Conventional Optimal Torque Control;824
92.4.2;3.2 Proposed Torque Control;825
92.4.3;3.3 Optimization of Control System Dynamics;826
92.5;4 Simulation Results;827
92.6;5 Conclusions;829
92.7;References;829
93;Feedback-Linearization-Based Direct Power Control of DFIG Wind Turbine Systems Under Unbalanced Grid Voltage;830
93.1;Abstract;830
93.2;1 Introduction;830
93.3;2 Modeling of DFIG;831
93.3.1;2.1 Modeling of DFIG Under Normal Grid Condition;831
93.3.2;2.2 Behaviors of DFIG Under Unbalanced Voltage Condition;833
93.4;3 Feedback Linearization;835
93.5;4 Simulation Results;836
93.6;5 Conclusions;838
93.7;References;838
94;High-Gain Observer Based Output Feedback Controller for a Two-Motor Drive System: A Separation Principle Approach;840
94.1;Abstract;840
94.2;1 Introduction;840
94.3;2 Problem Statement;841
94.4;3 High Gain Observer of Multi-motor Systems;843
94.5;4 Sliding Mode Control of Multi-motor Systems;845
94.6;5 Output Feedback Control Design of Multi-motor Systems;845
94.7;6 Simulation Results;847
94.8;7 Conclusions;849
94.9;References;849
95;A Fuzzy-Based Supervisory Controller Development for a Series Hydraulic Hybrid Vehicle;850
95.1;Abstract;850
95.2;1 Introduction;850
95.3;2 System Modeling;851
95.4;3 Control System Development;853
95.5;4 Simulation Results and Discussion;856
95.6;5 Conclusion;859
95.7;References;859
96;Rotor Time Constant Estimation of Induction Motor Using Online PI-Adaptive and GA-Adaptive Model;860
96.1;Abstract;860
96.2;1 Introduction;860
96.3;2 Mathematical Model of the Vector Controlled Induction Motor;862
96.4;3 Model Reference Adaptive System Method (MRAS);863
96.5;4 GA Adaptive Model Method;864
96.6;5 Simulation Results;866
96.6.1;5.1 The Simulation Results with Rotor Time Constant Is Constant;867
96.6.2;5.2 Simulated Results with Rotor Time Constants Change;869
96.7;6 Conclusion;870
96.8;Acknowledgement;870
96.9;References;870
97;Estimate Parameters of Induction Motor Using ANN and GA Algorithm;872
97.1;Abstract;872
97.2;1 Introduction;872
97.3;2 Mathematical Model of Induction Motor for Parameter Estimation;873
97.4;3 Parameters Estimation of Induction Motor Using ANN Algorithm;877
97.5;4 Parameter Estimation of Induction Motor Using GA Algorithm;878
97.6;5 Simulation Results;879
97.6.1;5.1 Simulation Results with ANN Algorithm;879
97.6.2;5.2 Simulation Results with GA Algorithm;880
97.7;6 Conclusion;881
97.8;Acknowledgement;881
97.9;References;881
98;Study on Hybrid Method for Efficiency Optimization of Induction Motor Drives;883
98.1;Abstract;883
98.2;1 Introduction;883
98.3;2 Mathematical Model of an Induction Motor;884
98.4;3 Efficiency Optimal Control;886
98.4.1;3.1 Power Lost Control Algorithm;886
98.4.2;3.2 Search Control Algorithm;887
98.5;4 The Simulation Results and Discussion;889
98.5.1;4.1 Parameters of Motor Model with Iron Loss;889
98.5.2;4.2 Simulation Results and Discussion;890
98.6;5 Conclusion;892
98.7;Acknowledgement;892
98.8;References;892
99;Power Systems;894
100;A New Optimal Algorithm for Multi-objective Short-Term Fixed Head Hydrothermal Scheduling with Emission Control Consideration;895
100.1;Abstract;895
100.2;1 Introduction;895
100.3;2 Formulation of Multi-objective Dispatch;897
100.4;3 Novel Cuckoo Search Algorithm;898
100.4.1;3.1 The First Modification;899
100.4.2;3.2 The Second Modification;899
100.5;4 Numerical Results;901
100.6;5 Conclusion;904
100.7;References;904
101;A Study of the Power Factor Improvement by Using Harmonic Filter in Busan Urban Railway Substation with Thyristor Rectification Method;906
101.1;Abstract;906
101.2;1 Introduction;906
101.3;2 Rectification Method of Using Thyristor;907
101.4;3 Design and Simulation of Harmonic Filter;907
101.4.1;3.1 Specifications of the 12 Pulse Thyristor Dual Converter;907
101.4.2;3.2 Design and Simulation of Harmonic Filter;908
101.4.2.1;3.2.1 Simulation of Harmonic Current and Power Before Installation of Harmonic Filter;909
101.4.2.2;3.2.2 Calculation of Harmonic Filter Capacity;909
101.4.2.3;3.2.2 Calculation of Harmonic Filter Capacity;909
101.4.2.4;3.2.3 Simulation of Harmonic Current and Power After Installing Harmonic Filter;911
101.5;4 Conclusions;912
101.6;Acknowledgement;912
101.7;References;912
102;Variable Structure Load Frequency Control of Power System;913
102.1;Abstract;913
102.2;1 Introduction;913
102.3;2 Two-Area LFC System;914
102.4;3 Variable Structure Load Frequency Control Design;915
102.5;4 Simulation Tests;917
102.6;5 Conclusions;919
102.7;References;919
103;Quantum-Behaved Bat Algorithm for Combined Economic Emission Dispatch Problem with Valve-Point Effect;921
103.1;Abstract;921
103.2;1 Introduction;921
103.3;2 Problem Formulation;922
103.3.1;2.1 Economic Dispatch (ED);923
103.3.2;2.2 Emission Dispatch;923
103.3.3;2.3 Constraints;923
103.3.4;2.4 Combined Economic Emission Dispatch (CEED);924
103.4;3 Methodology;924
103.5;4 Result and Analysis;926
103.6;5 Conclusion;929
103.7;Acknowledgments;930
103.8;References;930
104;Modified Flower Pollination Algorithm for Solving Economic Dispatch Problem;932
104.1;Abstract;932
104.2;1 Introduction;932
104.3;2 Problem Formulation;933
104.3.1;2.1 Objective Function;933
104.3.2;2.2 Constraints;933
104.3.3;2.3 Processing Power Balance Constraint;934
104.4;3 Modified Flower Pollination Algorithm for ELD Problem;935
104.4.1;3.1 Conventional Flower Pollination Algorithm (CFPA);935
104.4.2;3.2 Modified Flower Pollination Algorithm (MFPA);936
104.5;4 Implementation of the MFPA for the Considered Problem;936
104.5.1;4.1 Initialization;936
104.5.2;4.2 The First Solution Generation via Local Search;937
104.5.3;4.3 The Second Solution Generation via Global Search;937
104.5.4;4.4 The Termination Criterion of the Search Process;937
104.6;5 Numerical Results;938
104.7;6 Conclusion;939
104.8;References;940
105;Optimal Load Frequency Control in an Isolated Power System;941
105.1;Abstract;941
105.2;1 Introduction;942
105.3;2 Mathematical Model of an Isolated Power System;943
105.3.1;2.1 Mathematical Modelling of Generator;943
105.3.2;2.2 Mathematical Modelling of Load;943
105.3.3;2.3 Mathematical Modelling for Prime Mover;944
105.3.4;2.4 Mathematical Modelling of Governor;944
105.4;3 Optimal Load-Frequency Controller Design;946
105.5;4 Simulation Results;948
105.6;5 Conclusion;950
105.7;References;950
106;Energy;952
107;A Research on the Thermal Daily Performance of Hybrid Solar Collector with Fin-and-Tube Heat Exchanger in Winter;953
107.1;Abstract;953
107.2;1 Introduction;954
107.3;2 Experimental Apparatus and Method;955
107.3.1;2.1 Experimental Apparatus;955
107.3.2;2.2 Experimental Method;956
107.4;3 Results and Discussion;957
107.5;4 Conclusion;961
107.6;Acknowledgments;961
107.7;References;962
108;A Study on the Heat Exchange Performance of Hybrid Solar Collector with Air to Water Heat Exchanger Type;963
108.1;Abstract;963
108.2;1 Introduction;964
108.3;2 Experimental Apparatus and Method;964
108.3.1;2.1 Experimental Apparatus;964
108.3.2;2.2 Experimental Method;966
108.4;3 Results and Discussion;967
108.5;4 Conclusion;970
108.6;Acknowledgments;970
108.7;References;970
109;Numerical Design of Solar Collector Trough System for Integrated Solar Combine Cycle;972
109.1;Abstract;972
109.2;1 Introduction;972
109.3;2 Proposed Model of an Integrated Solar Combine Cycle;973
109.3.1;2.1 Integrated Solar Combine Cycle;973
109.3.2;2.2 Design an Integrated Solar Combine Cycle;973
109.3.3;2.3 Design Solar Trough;975
109.4;3 Description and Computation of the Solar Thermal Collector;976
109.4.1;3.1 The Total Intensity of Solar Radiation on the Surface of the Earth;976
109.4.2;3.2 Calculating the Heating Process;977
109.4.3;3.3 Calculating the Heat Capacity;980
109.4.4;3.4 Calculating Number of the Needed Solar Trough;981
109.5;4 Calculate Characteristic Parameters of the Sample Device;981
109.6;5 Conclusion;983
109.7;References;984
110;Mechanical Engineering;985
111;Effect of Minimum Quantity Lubrication on Surface Roughness in Milling Machining;986
111.1;Abstract;986
111.2;1 Introduction;986
111.3;2 Experiment Setup;988
111.3.1;2.1 Design Experiment;988
111.3.2;2.2 Mathematical Model;989
111.4;3 Experimental Details;992
111.4.1;3.1 Single-Factor Experiments;993
111.4.2;3.2 Multi-factor Experiments;994
111.5;4 Conclusion;996
111.6;References;996
112;Slip Analysis on a Non-holonomic Continuously Variable Transmission Using Magic Formula;998
112.1;Abstract;998
112.2;1 Introduction;999
112.3;2 Non-holonomic Continuously Variable Transmissions;1000
112.4;3 Friction Model and Experimental Results;1001
112.4.1;3.1 Planar Friction Model Using Magic Formula;1001
112.4.2;3.2 Test Bench Setup and Experimental Results;1002
112.5;4 Numerical Results Using First-Order Time Delayed Slip;1003
112.6;5 Conclusions;1007
112.7;Acknowledgement;1007
112.8;References;1008
113;Sterilization of Edible Bird Nest Product Utilize Microwave Technology;1009
113.1;Abstract;1009
113.2;1 Introduction;1009
113.3;2 Methodology;1010
113.3.1;2.1 Microwave Applicator Design;1010
113.3.2;2.2 Sterilization Experimental Design;1012
113.4;3 Results;1014
113.4.1;3.1 Microwave Design Results;1014
113.4.2;3.2 Sterilization Results;1016
113.5;4 Conclusion and Discussion;1018
113.6;References;1019
114;Forming Limit Diagram Prediction of AA6061-T6 Sheet Using a Microscopic Void Growth Model;1021
114.1;Abstract;1021
114.2;1 Introduction;1021
114.3;2 Ductile Fracture Model;1022
114.4;3 Numerical Implementation;1023
114.5;4 Experimental Work;1023
114.6;5 Numerical Simulation;1025
114.6.1;5.1 Calibration of the Material Parameters;1025
114.6.2;5.2 Forming Limit Diagram;1026
114.7;6 Conclusion;1030
114.8;Acknowledgements;1030
114.9;References;1030
115;Numerical Analysis of LBV150 ROV Thruster Performance Under Open Water Test Condition;1032
115.1;Abstract;1032
115.2;1 Introduction;1032
115.3;2 LBV150 ROV Thruster’s Thrust Test-Rig;1034
115.4;3 3D Modeling of the LBV150 ROV Thruster;1035
115.5;4 Numerical Analysis of the SeaBotix LVB150 ROV Thruster;1036
115.5.1;4.1 Mesh Generation for Simulation;1036
115.5.2;4.2 Simulation of Dynamics of the SeaBotix LBV150 ROV Thruster;1037
115.6;5 Conclusions;1041
115.7;Acknowledgement;1041
115.8;References;1041
116;A Method for Tuning the Frequency Series Wave Speed in Hydraulic Flexible Hose;1042
116.1;Abstract;1042
116.2;1 Introduction;1042
116.3;2 Three-Transducer Method with Frequency Series Wave Speed;1043
116.3.1;2.1 Wall Model of Flexible Hose;1044
116.3.2;2.2 Function of Wave Speed on a 3 Parameters Flexible Tube Model;1044
116.3.3;2.3 Function of Wave Speed on a 5 Parameters Flexible Tube Model;1046
116.4;3 Calculation of Wave Speed;1047
116.4.1;3.1 An Experiment with Three-Transducer Method with Frequency Series Wave Speed;1047
116.4.2;3.2 Trial and Error Method;1048
116.4.3;3.3 Parameter Tuning with RCGA;1048
116.5;4 Conclusion;1051
116.6;Acknowledgement;1051
116.7;References;1051
117;Optimal Design of RFECT System for Inspection of 16-inch Ferromagnetic Pipe;1052
117.1;Abstract;1052
117.2;1 Introduction;1052
117.3;2 Optimal Design of RFECT System;1053
117.3.1;2.1 Exciter Coil Design;1053
117.3.2;2.2 Receiver Coil Design;1057
117.4;3 Verification by Experiment;1059
117.5;4 Conclusion;1061
117.6;References;1062
118;Building Management Algorithms in Automated Warehouse Using Continuous Cluster Analysis Method;1063
118.1;Abstract;1063
118.2;1 Introduction;1063
118.3;2 Methodology;1064
118.3.1;2.1 Basic of ABC Storage, Closest Open Location - COL Policy and Continuous Cluster Method;1064
118.3.2;2.2 Assumption Made;1065
118.3.3;2.3 Layout Design;1066
118.3.4;2.4 Automated Storage and Retrieval Algorithm;1067
118.4;3 Simulation Software;1068
118.5;4 Simulated Result;1068
118.5.1;4.1 Comparison of Continuous Cluster Algorithm and Random Algorithms;1069
118.5.2;4.2 Comparison of Continuous Cluster Algorithm and ABC Policy;1071
118.6;5 Conclusion;1072
118.7;References;1072
119;Development of VR Based Authoring Tool for Smart Factory;1073
119.1;Abstract;1073
119.2;1 Introduction;1073
119.3;2 Related Works;1074
119.4;3 VR Factory System;1076
119.4.1;3.1 Architecture;1076
119.4.2;3.2 VR Visualization;1076
119.4.3;3.3 VR Based Authoring Tool;1077
119.4.4;3.4 Simulation;1078
119.5;4 Experiment;1080
119.6;5 Conclusion;1080
119.7;References;1081
120;Author Index;1083



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.