Eichler / Zilberberg | Classical and Quantum Parametric Phenomena | Buch | 978-0-19-286270-9 | sack.de

Buch, Englisch, 192 Seiten, Format (B × H): 254 mm x 175 mm, Gewicht: 544 g

Reihe: Oxford Graduate Texts

Eichler / Zilberberg

Classical and Quantum Parametric Phenomena


Erscheinungsjahr 2023
ISBN: 978-0-19-286270-9
Verlag: Oxford University Press

Buch, Englisch, 192 Seiten, Format (B × H): 254 mm x 175 mm, Gewicht: 544 g

Reihe: Oxford Graduate Texts

ISBN: 978-0-19-286270-9
Verlag: Oxford University Press


Classical and Quantum Parametric Phenomena provides an overview of the phenomena arising when parametric pumping is applied to oscillators. These phenomena include parametric amplification, noise squeezing, spontaneous symmetry breaking, activated switching, cat states, and synthetic Ising spin lattices. To understand these effects, topics such as nonlinear and stochastic dynamics, coupled systems, and quantum mechanics are introduced. Throughout the book, introductions are kept as succinct as possible and attention is focused on understanding parametric oscillators. As a result, the text helps readers to familiarize themselves with many aspects of parametric systems and understand the common theoretical origin of nanomechanical sensors, optical amplifiers, and superconducting qubits.

Parametric phenomena have enabled important scientific breakthroughs over the last decades and are still at the focus of intense research efforts. This book provides a resource for experimental and theoretical physicists entering the field or wishing to gain a deeper understanding of the underlying connections. This includes combining formal and intuitive explanations, accompanied by exercises based on numerical Python codes. This combination allows readers to experience parametric phenomena from various directions and apply their understanding directly to their own projects.

Eichler / Zilberberg Classical and Quantum Parametric Phenomena jetzt bestellen!

Weitere Infos & Material


Alexander Eichler studied physics in Basel (Switzerland) from 2000-2005, followed by a doctorate in Christian Schönenberger's group. His first postdoctoral position was in Adrian Bachtold's group in Barcelona (Spain), where he investigated the nonlinear properties of nanomechanical resonators made from carbon nanotubes and graphene. In 2013, he joined the group of Christian Degen at ETH Zürich (Switzerland) to work on magnetic resonance force microscopy. Since 2019 he has been a senior scientist in charge of the group's nanomechanics team. His main interests lie in developing scanning force microscopes with the aim of detecting individual nuclear spins, and the exploration of parametric networks as Ising machines. He is a private docent at ETH since 2022.

Oded Zilberberg studied computer science, mathematics, and physics at the Hebrew university in Jerusalem (Israel, 2001-2004). He continued towards a masters in physics in Basel (Switzerland, 2005-2007), and obtained his doctorate on quantum measurements in solids state systems in the group of Yuval Gefen at the Weizmann Institute of Science (Israel, 2008-2012). His postdoctoral position was in Gianni Blatter's group at ETH Zurich (Switzerland, 2013-2015), where he extended his interests to studying material properties, quantum optics, and nonlinear dynamics. Following a year at ABB's corporate research (Switzerland), he started his own research group at ETH Zurich (Switzerland, 2016-2021), and is now a full professor at the University of Konstanz since late 2021.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.