E-Book, Englisch, 668 Seiten
Eldik / Hubbard Advances in Inorganic Chemistry
1. Auflage 2009
ISBN: 978-0-08-096308-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 668 Seiten
ISBN: 978-0-08-096308-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
The Advances in Inorganic Chemistry series present timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bio-inorganic to solid state studies. This acclaimed serial features reviews written by experts in the field and serves as an indispensable reference to advanced researchers. Each volume contains an index, and each chapter is fully referenced.
* Features comprehensive reviews on the latest developments * Includes contributions from leading experts in the field * Serves as an indispensable reference to advanced researchers
Autoren/Hrsg.
Weitere Infos & Material
1;Front cover;1
2;Advances in Inorganic Chemistry;4
3;Copyright page;5
4;Contents;6
5;List of Contributors;10
6;Preface;12
7;Chapter 1. Controlling platinum, ruthenium, and osmium reactivity for anticancer drug design ;14
7.1;I. Introduction;14
7.2;II. Platinum Anticancer Prodrugs: A Photoactivation Strategy;17
7.3;III. Ruthenium-Arene Anticancer Drugs;34
7.4;IV. Osmium(II)-Arenes: A Cytotoxic Family of the Heavier Congener;64
7.5;V. Concluding Remarks;70
7.6;Acknowledgments;71
7.7;References;71
8;Chapter 2. Design and function of metal complexes as contrast agents in MRI;76
8.1;I. Introduction;76
8.2;II. Relaxivity of GdIII Complexes: Optimization of the Relaxivity;80
8.3;III. Stability Aspects;105
8.4;IV. Paramagnetic CEST Agents;111
8.5;V. Responsive Imaging Probes;114
8.6;VI. MnII Complexes in the Context of MRI;122
8.7;VII. Non-Classical GdIII-Based MRI Contrast Agents;128
8.8;VIII. Conclusions and Outlook;132
8.9;References;132
9;Chapter 3. Design considerations towards simultaneously radiolabeled and fluorescent imaging probes incorporating metallic species;144
9.1;I. Introduction;144
9.2;II. Small-Molecule Metal-Based Probes and Their Biomedical Imaging Capabilities;150
9.3;III. Conclusions;184
9.4;Acknowledgments;185
9.5;References;185
10;Chapter 4 .Iron sequestration by small molecules: Thermodynamic and kinetic studies of natural siderophores and synthetic model compounds;192
10.1;I. Chemistry of Iron and Siderophores;192
10.2;II. Siderophore Structure;195
10.3;III. Thermodynamics of Iron-Siderophore Interactions;199
10.4;IV. Chelation Kinetics of Iron-Siderophore Systems;233
10.5;V. Siderophore Recognition and Cellular Uptake;244
10.6;VI. Applications and Future Directions in Siderophore Research;248
10.7;List of Structure Numbers, Figures, and Abbreviations;253
10.8;Acknowledgments;255
10.9;References;255
11;Chapter 5. Calcium in biological systems;264
11.1;I. Introduction;265
11.2;II. The Ca2plus Aqua-Cation;281
11.3;III. Calcium-Binding Metalloproteins;302
11.4;IV. Ca2plus in Ionophores, Channels, and Pumps;321
11.5;V. Carbohydrates and Carboxylates;329
11.6;VI. Phosphates, Phosphonates, Nucleosides, and Nucleotides;334
11.7;VII. Stability Constants: An Overview;339
11.8;VIII. Calcium-Containing Rigid Materials;339
11.9;Ligand Abbreviations;351
11.10;Acknowledgments;352
11.11;References;352
11.12;Appendix: The Term Ligand;378
12;Chapter 6. New developments in synthetic nitrogen fixation with molybdenum and tungsten phosphine complexes;380
12.1;I. Introduction;380
12.2;II. Mechanism of the Chatt Cycle: Experimental Investigations;384
12.3;III. Mechanism of the Chatt Cycle: Theoretical Investigations;395
12.4;IV. Molybdenum Dinitrogen Complexes with Polydentate Phosphine and Mixed PsolN Ligands;399
12.5;V. Conclusions;414
12.6;Acknowledgments;415
12.7;References;415
13;Chapter 7. Chemistry of metalated container molecules;420
13.1;I. Introduction;420
13.2;II. Metalated Container Molecules: Host Systems and Complex Types;422
13.3;II. Metalated Container Molecules of Binucleating Polyaza-Dithiophenolate Macrocycles;443
13.4;IV. Conclusion;470
13.5;Acknowledgments;471
13.6;References;471
14;Chapter 8. Mechanistic considerations on the reactivity of green FeIII-TAML activators of peroxides ;484
14.1;I. Introduction;485
14.2;II. Speciation of Tetraamide Iron(III) Macrocycles in Solution and the Solid State;486
14.3;III. Kinetics and Mechanisms of Demetalation of FeIII-TAML Activators;491
14.4;IV. Catalysis-Relevant Oxidized Forms Derived from FeIII-TAMLs;500
14.5;V. Mechanism of Catalysis by Tetraamide Macrocyclic FeIII-TAML Activators of Hydrogen Peroxide, Functional Catalase-Peroxidase Replicas;507
14.6;VI. The Activity-Stability Parameterization of Homogeneous Green Oxidation Catalysts;523
14.7;VII. Concluding Remarks;529
14.8;Acknowledgment;530
14.9;References;530
15;Chapter 9. Ligand exchange processes on the smallest solvated alkali and alkaline earth metal cations: An experimental and theoretical approach;536
15.1;I. Introduction;536
15.2;II. Solvation of Metal Ions;539
15.3;III. Solvent Exchange Mechanism;546
15.4;IV. Conclusion;577
15.5;Acknowledgments;577
15.6;References;577
16;Chapter 10. Spin-state changes and reactivity in transition metal chemistry: Reactivity of iron tetracarbonyl;586
16.1;I. Introduction;586
16.2;II. Chemistry of Fe(CO)5 Photofragments;590
16.3;III. Other Spin-Forbidden Reactions of Transition Metal Compounds;619
16.4;IV. Spin-Forbidden Reactions: General Trends;622
16.5;V. Conclusions;629
16.6;Acknowledgments;631
16.7;References;631
17;Index;638
18;Contents of previous volumes;662