Buch, Englisch, 455 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 7022 g
Buch, Englisch, 455 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 7022 g
ISBN: 978-1-4939-5260-1
Verlag: Springer
Advances in Energy Harvesting Methods presents a state-of-the-art understanding of diverse aspects of energy harvesting with a focus on: broadband energy conversion, new concepts in electronic circuits, and novel materials. This book covers recent advances in energy harvesting using different transduction mechanisms; these include methods of performance enhancement using nonlinear effects, non-harmonic forms of excitation and non-resonant energy harvesting, fluidic energy harvesting, and advances in both low-power electronics as well as material science. The contributors include a brief literature review of prior research with each chapter for further reference.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction and Methods of Mechanical Energy Harvesting.- Broadband Vibration Energy Harvesting Techniques.- MEMS Electrostatic Energy Harvesters with Nonlinear Springs.- Broadband Energy Harvesting from a Bistable Potential Well.- Plucked Piezoelectric Bimorphs for Energy Harvesting.- Energy Harvesting with Vibrating Shoe-Mounted Piezoelectric Cantilevers.- Role of Stiffness Nonlinearities in the Transduction of Energy Harvesters Under White Gaussian Excitations.- Random Excitation of Bistable Harvesters.- Energy Harvesting from Fluids using Ionic Polymer Metal Composites.- Flow-Induced Vibrations for Piezoelectric Energy Harvesting.- Airfoil-Based Linear and Nonlinear Electroaeroelastic Energy Harvesting.- Acoustic Energy Harvesting using Sonic Crystals.- Power Conditioning Techniques for Energy Harvesting.- Asynchronous Event-Based Self-Powering, Computation and Data-Logging.- Vibration-Based Energy-Harvesting Integrated Circuits.- Stretching the Capabilities of Energy Harvesting: Electroactive Polymers Based on Dielectric Elastomers.- Materials and Devices for MEMS Piezoelectric Energy Harvesting.- Nonlinear Vibration Energy Harvesting with High Permeability Magnetic Materials.