E-Book, Englisch, 144 Seiten, eBook
Reihe: The Springer Series on Challenges in Machine Learning
Escalera / Ayache / Wan Inpainting and Denoising Challenges
1. Auflage 2019
ISBN: 978-3-030-25614-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 144 Seiten, eBook
Reihe: The Springer Series on Challenges in Machine Learning
ISBN: 978-3-030-25614-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. A Brief Review of Image Denoising Algorithms and Beyond.- 2. ChaLearn Looking at People: Inpainting and Denoising Challenges.- 3. U-Finger: Multi-Scale Dilated Convolutional Network for Fingerprint Image Denoising and Inpainting.- 4. FPD-M-net: Fingerprint Image Denoising and Inpainting Using M-Net Based Convolutional Neural Networks.- 5. Iterative Application of Autoencoders for Video Inpainting and Fingerprint Denoising.- 6. Video DeCaptioning using U-Net with Stacked Dilated Convolutional Layers.- 7. Joint Caption Detection and Inpainting using Generative Network.- 8. Generative Image Inpainting for Person Pose Generation.- 9. Person Inpainting with Generative Adversarial Networks.- 10. Road Layout Understanding by Generative Adversarial Inpainting.- 11. Photo-realistic and Robust Inpainting of Faces using Refinement GANs.