Buch, Englisch, 146 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 386 g
Reihe: Resilience and Sustainability in Civil, Mechanical, Aerospace and Manufacturing Engineering Systems
Intensifying Dynamic Loads for Seismic Analysis and Design
Buch, Englisch, 146 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 386 g
Reihe: Resilience and Sustainability in Civil, Mechanical, Aerospace and Manufacturing Engineering Systems
ISBN: 978-1-032-10712-7
Verlag: CRC Press
Seismic assessment and earthquake-resistant design are essential applications of earthquake engineering for achieving seismic safety for buildings, bridges, infrastructure, and many other components of the built environment. The Endurance Time Method (ETM) is used for seismic analysis of simple and complex structural systems and civil engineering infrastructure as well as producing optimal and cost-effective structural and detail designs. ETM is a relatively new approach to seismic assessment and design of structures. It has developed into a versatile tool in the field, and its practical applications are expected to increase greatly in the near future.
Zielgruppe
Academic and Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1 Introduction to the Endurance Time Method and Intensifying Dynamic Load Functions Review Concept of Endurance Time Method Applications of Endurance Time Method Implementation of the Endurance Time Method Intensifying Dynamic Load Functions Simulated Endurance Time Excitations References 2 Objective Functions for Generating Endurance Time Excitation Functions Review Second Generation of Endurance Time Excitations Third Generation of Endurance Time Excitations Fourth Generation of Endurance Time Excitations Fifth Generation of Endurance Time Excitations References 3 Optimization Variable Spaces Review Optimization Variable Space for Simulating Endurance Time Excitations Time Domain Wavelet Decomposition Increasing Sine Functions Parameter Tuning Accuracy of Excitation Simulated with the Proposed Method References 4 Generating ETEFs Based on Linear Spectra Review Simulation of “a” series Simulation of “lc” series References 5 Nonlinear Analysis-Based Endurance Time Excitation Generation Review Procedure of Simulating Third Generation Signal Representation and Optimization Algorithm Results Comparison of Dynamic Characteristics of Generated Endurance Time Excitations and Targets References 6 Generating ETEFs Considering Spectral Energy Content Review Procedure of Simulating Fifth Generation Signal Representation and Optimization Algorithm Results Comparison of Dynamic Characteristics of Generated Endurance Time Excitations and Targets Damage Spectra of Generated Endurance Time Excitations vs. Ground Motions References 7 Application of Meta-Heuristic Optimization Methods in Generating ETEFs Review Imperialist Competitive Algorithm Parameter Tuning of ICA Significance of Optimization Space and Initial Population Generating Approach Significance of Optimal Parameter in Simulating Endurance Time Excitations Comparison of Simulated Endurance Time Excitations with Targets References 8 Modifying ETEFs as an Alternative to their Generation Review Endurance Time Excitations Spectral Matching Step-by-Step Application Accuracy of Spectral Matched Endurance Time Excitations Results References 9 Generating ETEFs for Direct Response Variability Estimation Review Problem Formulation Problem Solving Simulated Excitations Seismic Response Probability Distribution Calculations Application References 10 Optimal Objective Functions for Generating ETEFs Review Generalized Objective Function Finding Optimal Objective Function Application Results References