Faddeev / Takhtajan | Hamiltonian Methods in the Theory of Solitons | Buch | 978-3-540-69843-2 | sack.de

Buch, Englisch, 592 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1860 g

Reihe: Classics in Mathematics

Faddeev / Takhtajan

Hamiltonian Methods in the Theory of Solitons


Nachdruck of the 1. Auflage Berlin Heidelberg New York 1987
ISBN: 978-3-540-69843-2
Verlag: Springer Berlin Heidelberg

Buch, Englisch, 592 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1860 g

Reihe: Classics in Mathematics

ISBN: 978-3-540-69843-2
Verlag: Springer Berlin Heidelberg


The main characteristic of this now classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation, rather than the more usual KdV equation, is considered as a main example. The investigation of this equation forms the first part of the book. The second part is devoted to such fundamental models as the sine-Gordon equation, Heisenberg equation, Toda lattice as well as the classification of integrable models and the methods for constructing their solutions. 

Faddeev / Takhtajan Hamiltonian Methods in the Theory of Solitons jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


The Nonlinear Schrödinger Equation (NS Model).- Zero Curvature Representation.- The Riemann Problem.- The Hamiltonian Formulation.- General Theory of Integrable Evolution Equations.- Basic Examples and Their General Properties.- Fundamental Continuous Models.- Fundamental Models on the Lattice.- Lie-Algebraic Approach to the Classification and Analysis of Integrable Models.- Conclusion.- Conclusion.


Ludwig D. Faddeev was born in Leningrad, USSR in 1934. He graduated from the Leningrad State University in 1956 and received his Ph.D. from there in 1959. Since 1959 he has been affiliated with the Leningrad branch of Steklov Mathematical Institute and was its Director from 1976 to 2000. Currently Faddeev is Director of the Euler International Mathematical Institute in St. Petersburg, Russia, and Academician-Secretary of the Mathematics Division of the Russian Academy of Sciences. He was President of the International Mathematical Union during1986-1990. 

Faddeev’s principal interests and contributions cover the large area of mathematical physics. They include, in chronological order, quantum scattering theory, spectral theory of automorphic functions, quantization of Yang-Mills theories, Hamiltonian methods in classical and quantum integrable systems, quantum groups and quantum integrable systems on a lattice. Faddeev’s work laid a mathematical foundation for functional methods in quantum gauge theories. A great deal of his work was directed towards development of Hamiltonian methods in classical and quantum field theories.

Leon A. Takhtajan was born in Erevan, Republic of Armenia of the USSR, in 1950. He was schooled in Leningrad, graduated from the Leningrad State University in 1973, and received his Ph.D. from the Leningrad branch of Steklov Mathematical Institute in 1975, with which he was affiliated during1973-1998. Since 1992 he has been Professor of Mathematics at Stony Brook University, USA.

Takhtajan’s principal interests and contributions are in the area of mathematical physics. They include classical and quantum integrable systems, quantum groups, Weil-Petersson geometry of moduli spaces of Riemann surfaces and moduli spaces of vector bundles, and application of quantum methods to algebraic and complex analysis. His work, together withL.D. Faddeev and E.K. Sklyanin, led to the development of the quantum inverse scattering method from which the theory of quantum groups was born.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.